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Abstract: Complex Analysis is playing an important role in various engineering fields and in particular contour
integration. In this paper, | started with some important basic concepts of Analytic function, Singularities, Zeros ,
Isolated Singularity, Removable Singularity, Pole, Essential Singularity, and Residue to evaluate the complex
integration.
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1. INTRODUCTION

Definitionl. (Analytic function)

A single valued function f (z) is said to be analytic in a region R of complex plane if f (z) has derivative at each point of R.
If the function f (z) is said to be analytic at a point z = o then f (z) is analytic in the region which contain the point z = a as
interior. Hence a function f (z) is analytic at a point z = q, then f (z) is analytic in some neighborhood Dg(a) ={z: |z - a| <
R} of a.

Examplel.1.Any polynomial function (real or complex) is analytic

Examplel.2.The exponential function is analytic

Examplel.3.The trigonometric functions are analytic

Examplel.4.The logarithmic functions are analytic

Examplel.5.The absolute function |z| is not analytic, because it is not differentiable at z =0
Singularities and Zeros

Definition2. (Singularity)

If a point z = « is called a singular point, or singularity of the complex function f(z) if f is not analytic atz = o, but
every neighborhood Dg(a) ={z: |z - a| < R} of a contains at least one point at which f(z) is analytic.

Example2.1

The function f(z) = L is not analytic at z = 1, but is analytic for all other values of z. Thus the point z = 1 is a singular
1-z p

point of f (z).
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Example2.2

The function f(z) = i is not analytic at z = 0, but is analytic for all other values of z. Thus the point z = 0 is a singular
point of f ().

Example2.3

Consider g (z) = log z , g (2) is analytic for all z except at the origin and at all points on the negative real-axis. Thus, the
origin and each point on the negative real axis is a singularity of g (2).

Example2.4

The function f(z) = Z(Zl—_l) is not analytic at z = 0 and z = i, but is analytic for all other values of z. Thus the point z =
0 and z =i are the singular points of f (z).

Definition3. (Isolated Singularity)

The point a is called an isolated singularity of the complex function f(z) if f is not analytic at z = a, but there exists a
real number R >0 such that f(z) is analytic everywhere in the punctured disk Dg"(a) ={z: 0 < |z - o/ < R}.

Example3.1
The function f(z) = i has an isolated singularity at z = 1.
Example3.2

The function f(z) = i has an isolated singularity at z = 0.

Example3.3
. . _ (z+1)
Consider the function f(z) = P
(z+1)

= —————— has three isolated singularitiesatz=0,z=1iand z = -i
z4(z=i)(z+i)

Example3.4

The function g(z) = log z, however, the singularity at z =0 (or at any point of the negative real axis) that is not isolated,
because any neighborhood of contains points on the negative real axis, and g(z) = log z is not analytic at those
points. Functions with isolated singularities have a Laurent series because the punctured disk Dg () is the same as the
annulus A (a, 0, R). The logarithm function g (z) does not have a Laurent series at any point z = -a on the negative real-
axis. We now look at this special case of Laurent's theorem in order to classify three types of isolated singularities.

2. REMOVABLE SINGULARITY, POLE OF ORDER K, ESSENTIAL SINGULARITY
Let f (2) has an isolated singularity at a with Laurent series expansion
f(z) =3¢, (z-w)", validforz€ A (0, 0, R) and -co < n < co.
Then we distinguish the following types of singularities at o.

Definition4. (Removable Singularities)

If c,=0forn=-1, -2, -3..., then we say that f (z) has a removable singularity at a. That is no negative powers terms in the
Laurent series expansion of f (z).

If f (z) has a removable singularity at z = a, then it has a Laurent series  f(2) = Ym-_wCn(z — )™ , valid forz € A (a,
0, R).

The power series for f (z) defines an analytic function in the disk Dg(w).

If we use this series to define f (o) = ¢, then the function f (z) becomes analytic at z = a, removing the singularity.
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Example4.1

sinz

Consider the function f(z) = — It is undefined at z = 0 and has an isolated singularity ~ atz =0, as the Laurent series
for f (z) is

valid for |z] > 0.
We can remove this singularity if we define f (0) = 1, for then f (z) will be analytic
atz=0

Example4.2

cosz—1

Consider g(z) = which has an isolated singularity at the point z = 0, as the Laurent series for g (z) is

zz2

80 =2 (-5+5-5+)

valid for |z| > 0.

We can remove this singularity if we define f (0) = - 1/2, then g (z) will be analytic
for all z.

Definition5. (Pole of order k)

If k is a positive integer such that ¢ # 0 but ¢, = 0 for n = -k-1, -k-2, -k-3..., then we say that  f (z) has a pole of order k
at a. That is in the Laurent series expansion of f (z) there are only (k terms) finite number of negative power terms.
If f (z) has a pole of order k at z = a, the Laurent series for f (z) is

f@) =Ym_xcn(z— )™ , validforz € A (o, 0, R) ,where ¢ #0.

Example5.1
H : sinz
Consider the function f (z) = —
1 z3 z5 z7
=s(e-5+5-5+)
1 1 72 z4
“ETataTat

Here the function f (z) has a pole of order k =2 atz =0.

Example5.2

5z+1
(z—2)3(z+3)(z-2)

Consider the function f(z) =
Has a pole of order 3 at z =2 and simple polesat z=-3 and z = 2.
Definition5.1. (Simple Pole)

If f (z) has a pole of order 1 at z = a, we say that f (z) has a simple pole at z = q.

Example5.1.1

Consider the function g(z) =<

z
Z
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2 3
21(1+£+Z_+Z_+...)
z 1! 2! 3!

2 3
:1+1+£+Z_+Z_+...’
4 2! 3! 4!

Clearly the function g (z) has a simple pole at z = 0.

Definition6. (Essential Singularities)

If ¢, # 0 for infinitely many negative integers n, then we say that f (z) has an essential singularity at z= «. That is in the

Laurent series expansion of f (z), there are infinite number of negative power terms.

Example6.1
Consider the function f (z) = z%sin (1/z)

=22<l_ g_l_g_ g.,.)

Z 3! 5! 7!
=7 — lZ_1 + —Z_3 —lZ_s + AR
Here the function f (z) has an essential singularity at the origin. Z=0

Example6.2

Consider the function f (z) = e§

oL,

t|N|H

=1+=%+

’

=1 +lZ_1 +lZ_2 + 12'3 + -,
1! 2! 3!

Here the function f (z) has an essential singularity at the origin. Z=0

Definition7. (Zero of order k).

A function f (z) analytic in Dg(a) has a zero of order k at the point z=a if and only if
1, and f¥(a) # 0 (k™ derivative of f(z) )

Example7.1
In the following function

f(z) =z sin 22

We have f'(z) =2 2% cos 2* + sin Z°
f"(z)=6zcos 2’ —47°sin 2
£ (z) = 6 cos z° - 8 z* cos 722 — 24 7° sin 7
Then, f(0)=f'(0)=f"(0)=0,butf"” (0) =6#0.
Hence the function f (z) has a zero of order k =3 atz = 0.
Definition7.1. (Simple Zero).
If the function f (z) has a zero of order one, then we say that f (z) has a simple zero.
Example7.1.1

The function f (z) =z has a simple zeroatz=0

Novelty Journals
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We have f' (z) =1, then f’ (0) =1 # 0, hence the function f (z) has zero of order one

Theorem 1. A function f (z) analytic in Dg(a) has a zero of order k at the point z = o iff its Taylor series given by
f(z) = Xh=ocn(z — )™ has co=C1="=¢C1=0

and ¢, £ 0.
Proof.

Suppose f(z) is analytic and has a zero of order k at the point z = a, then by Taylor’s theorem

n)
f(2) = X3otn(z — @)™ Where ¢, =L

ni

Given f(z) has a zero of order k at z=a , hence we have cg=¢; =" =¢y=0and ¢, #0

Conversely suppose the Taylor series of f (z) has ¢y = ¢, = = ¢x1 = 0 and ¢ # 0 which implies that from the definition of
zero, f (z) has a zero of order k at z=a.

Theorem I1. Suppose f (z) is analytic in Dgr(a). Then f (z) has a zero of order k at the point z = « if and only if it can be
expressed in the form f(2)=(z—- a)g(2)
where g (z) is analytic at z= o and g(a) # 0.

Proof.
Suppose f(z) has a zero of order k at z = a, then by Theorem 1, f (z) can be written as
f(2) = c(z-0) + Ciua(z-0) ™ +

= (-0 Ck + Cea(Z-0) + Ci2 (Z-0)* + 3

= (z0)9(2).
Where g (z) = G + Cs1(Z-00) + Cis2 (z-00)° +  which is analytic at z= o and g(a) #0
Corollary 11.1

If f(z) and g(z) are analytic at z =a, and have zeros of orders m and n, respectively at z =a, then their product h (z) =
f(z)g9(z) has a zero of order m + n at z =a.

Proof.

Suppose f(z) and g(z) are analytic at z = o and have zeros of orders m and n respectively at z = o
Then by Theorem Il, f (z) = (z-a)™ hy(z), and g(2) = (z-0)" hy(2),

Where h; (z) and h, (z) are analyticat z = a, hy (o) #0, h, (o) #0

Now h(z) = f(2)g(z) = (z-0)™ h(2) (z-0)" hy(2) = (z-0)™ " hy(2) ho(2) = (z-0)™" h3(2)

Where h; (z) = hy (z) h, (z) analytic at z= o and h; (a) #0

Hence h (z) has a zero of order mtn atz=a

Example 11.1 Let f (z) = z3sinz. Then f (z) can be factored as the product of z3 and sinz, which have zeros of orders m = 3
and n = 1, respectively, at z = 0.

Hence z = 0 is a zero of order 4 of f (2).
Letg(z)=z%and h (z) =sinzand f(z) =g (2) h (2)

Clearly g (z) and h (z) have zeros of orders m = 3 and n =1 respectively at z = 0 and hence by Corollary 11.1, f (z) has zero
oforderm+n=3+1=4atz=0
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Theorem I11. A function f (z) analytic in the punctured disk Dg"(a) has a pole of order k at z = o if and only if it can be
h(z)
(z— )k

expressed in the form f (2) = where the function h (z) is analytic at the point z=a and h (a) # 0.

Proof.
If f (z) has a pole of order k at z = a, the Laurent series for f (z) is
f@) =Ym_ycn(z— a)™ , validforz € A (a, 0, R), where ¢ #0.
f(2) = Yneocn(z — " + X2k ich(z — )™
=Y o cn(z — @) +ca(z-0)t + Co(z-a) 2+ ... + culz-a) ™
=32 ez — )" + (z-0)* (Ca(z-a)<t + co(z-0) P+ ...+ el
= (-0 (2 cn(z — ™) (z-a)  + Ca(z-0)T + Co(z-0) P+ ... + i)}
Letus take h (2) = {( 2o cn(z — @)") (z-0)* + c.o(z-0)*" + cp(z-0)* %+ ... + c4)} which is analytic at z = o and h(a) #
0
Therefore f(z) = (z-0) *h(2)

h(z)
(z— o)

Thatis f (z) =

Similarly the converse is also true

The following Corollaries are useful in determining the order of a zero or a pole

Corollary 111.1. If f (z) is analytic and has a zero of order k at the point z = q, then g(z) = % has a pole of order k at z

=q.
Proof.
Suppose f (z) has a zero of order k at z = a, then by Theorem I, f(2) = (z — a)*g(2)

where g (z) is analytic at z = o and g(a) # 0.

NOW L — ;
@ (z-a)kg(@)

1 __h®

@ (z-a)k ’

Let us take h (z) = ﬁ , then clearly h (z) is analytic at z=a and h(z) # 0

By Theorem lII, % has a pole of order k at z =«

Corollary 111.2. If f (z) has a pole of order k at the point z = a, then g(z) = — hasazero of orderk at z = .

f(@
Proof.
If f (z) has a pole of order k at the point z = a, then by Theorem Ill, f (z) = (Zh_(z))k

Where h (z) is analytic at z= a and h (a) # 0.

1 (z—a)k

Now 25 = e

Let us take G (z) = ﬁ , then J% = (z — @)*G(z), where G(z) is analytic at z= a and G(a) # 0

By Theorem I, ]% = g(z) has a zero of order k at z= o, where g (2) = (z — @)*G(2)

Corollary 111.3. If f(z) and g(z) have poles of orders m and n, respectively at the point z = q, then their product h(z) =
f(2)g(z) has a pole of order m +n at z = a.
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Proof.
Suppose f(z) and g(z) have poles of orders m and n, respectively at the point z = a, then by Theorem Ill, f (z) = %
_ h(®@

and g (2) = e

Now h(z) = f(z)g9(z) = Mm@ @) @ e H(z) = h;(2)h,(z) which is analytic at z = o and H(a) # 0
z—a)™ (z—a)™ (z— a)ym+n’ 1 2 .

Hence by Theorem 11, h(z) has a pole of order m+natz= o

Corollary I11.4. Let f (z) and g (z) be analytic with zeros of orders m and n, respectively at z = a. Then their

quotient h(z) = L@ has the following behavior:

9(2)
(i) If m>n, then h(z) has a zero of order m-natz =aq.

(if) If m<n, then h(z) has a pole of order n- matz =a.

(iii) If m = n, then h(z) has a removable singularity atz = a, and can be defined so that h(z) is analytic atz =
_lim

a, by h(a) = . ah(z).

t . .
22 and determine their order.

Example I11.1. Locate the zeros and poles of h(z) =

1
z

tanz _ sinz  _ f(2)

Given h(z) =

z " zcosz g(2)

We know that the zeros of f (z) = sinz occur at the points z = nx, where n is an integer. Because ' (nm) = cosnn # 0, the

zeros of f (z) are simple. Similarly, the function g (z) = zcosz has simple zeros at the points z = 0 and z =
(n + %) 7, where n is an integer. From the information given, we find that h(z) = % behaves as follows:

i. h(z) has simple zeros at z =nx, where n = +1, 2. ..

ii. h(z) hassimple polesat z = (n + %) 7, where n is an integer; and

iii. h(z) isanalytic atz =0 if we define h(0) = Zli_ino h(z) =1.

1

Example.l11.2. Locate the poles of g(z) = Py

and specify their order.
The roots of the quadratic equation 522 + 26z +5=0arez=-5andz = — é

If we replace z with z2 in this equation, the function f(z) = 5z* + 2622 + 5 hasroots z*=-5and 22 = —%,
Therefore the roots of f (z) arez=+iN5and z=% % .
That is f (z) has simple zeros at the points z=+iV5 and z=+ \/ig .

i

Corollary 3.1 implies that g(z) has simple poles at z==+i\V5and z==+ NG

ncotnz
z2 !

and determine their order.

Example I11.3. Locate the zeros and poles of g(z) =

The function f(z) = z? sinnz has a zero of order k=3 at z=0 and simple zeros at the points z ==£1, £2,..., Corollary
implies that g(z) has a pole of order 3 at the point z= 0 and simple poles at the points z = +1, +2,...,

1

Example 111.4. Find the poles of f(z) =

sinz—cosz
Here the poles of f(z) are the zeros of sinz — cosz
Take sinz —cosz =0 => sinz = cosz
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sinz
=>

=1 = tanz=1 => Z=n71;+£,n20,1,2....
cosz 4

Hence the simple zeros of sinz — cosz are z =nn + % ,n=0,1,2....

Therefore the simple poles of f (z) are z=nn + % ,n=0,12....

3. RESIDUE THEORY

Definition.1. (Residue). Let f (z) has a non-removable isolated singularity at the point z,. Then f(z) has the Laurent series
representation for all z in some punctured disk Dg"(z,) given by f(2) = ¥ _ a, (z — zo)™

1

z—2g

The coefficient a; of

is called the residue of f(z) at z,

It is denoted by Res[f,z] =a;
Example .1.1.
Consider f (z) = e?*

Then the Laurent series of f about the point z, = Ois given by
2 23

=l4+—+-— +—=+
1'z  2!z2  3!z3
The co-efficientof — =—— = Zis2
Z—2Zg z-0 z

Hence by definition of residue, residue of f (z) = e?at z, = 0 is given by Res [f, o] = 2

Example .1.2. Find residue of f (z) = Py at =0
_ 3 _ 3

f(Z) T 22+z-72) | z(z+1)(2-2)

NOW ;—é +i+ c

2+ (2-2) z 241 2-z
=>A(z+1)(2-z) + Bz(2-z) + Cz (z+1) =3
SA(-Z2 +2 +7) +B(2z —2%) +C(22 +2) = 3
=-A-B +C = 0---- (a)

A+2B +C =0 - (h)
2A =3 - (C) >A=3/2
(8) >-B +C=A=3/2
(b) 2B + C = -A = -3/2

Adding B+2C=0=B=-2C
PutB=-2C in-B+C=23/2
=3C =3/2=C=1/2
PutC=1/2,B=-2C=-1=>B=-1

Hencef(z):: A +i+i =3 _L+;
z z+1 2-z 2z z+1 2(2-2)

_ 3 1,1 a1 _ 3 2 141 z\ !
=2 L)+l @)t = 2 -2 (1= )
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3
2z

(lezt ) (4 +(§)2 +...)

9z

3 3
27 4 8

The residue of fat 0 is given by Res [f,0] = coefficient of i = z

e

Example 1.3. Find residue of f (z) = e at z,=0

z3

. _ 1 72 z3
Laurent expansion of f(z) = = {1+z+ Priaaon o}

1 1
= —4 —
23

1 1
—+—+—..
z z2! 3!

|
N | =

The residue of f at 0 is given by Res [f,0] = coefficient of i =

Contour integration

Contour integration is the process of calculating the values of a contour integral around a given
contour in the complex plane.

The Cauchy integral formulae are useful in evaluating contour integrals over a simple closed

f@
(Z—Zo)k

contour C where the integrand has the form and f is an analytic function

Example 1.

Evaluate [, ydz along the curve C: x =t-1,y =", 2<t<3
Solution.

Letz=x+iy=>dz=dx+idy

Given curve x =t-1 = dx = dt

Andy = e = dy = e"ldt

[ ydz = [ et (dx + idy) = [ '\ (dt + iet~dt) = [] et~'dt + [ ie**Vdt

_113 ie?t=213 2 ie*—e?
— t—1 — —
= e ] + 2 ] e —e+ > -

Example 2.
If C is the curve y = x3-3x*+4x-1 joining the points (1,1) and (2,3) then
find the value of [ (122% — 4iz)dz

1223 4iz212 + 3i

3 2 1141
= 4(2+3i)° - 2i(2+3i)? - 4(1+i)® + 2i(1+i)®> =-156 +38i

, . _ (243i 2 4 _
J (122° — 4iz)dz = [/~ (122* — 4iz)dz =

Recall (i).(Cauchy’s integral Theorem)
Let D be any simply connected domain. Let C be any closed contour contained in D and f(z)

analytic in D, then ¢, f(2) dz=0

Novelty Journals
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Recall (ii).
For a function f(z) analytic in Dg (z,)and for any r with 0 < r < R, the Laurent series

coefficients of f(z) are given by

=1 IO _gefor n =041 42, ... - 0

In = 2mi Y Gz
WhereC denotes the circle {z: |z-z,| = r} with positive orientation.
Putn=-1 in Equation (I) and replace C with any positively oriented simple closed contour C

containingz,, provided z, is the still only singularity of f(z) that lies inside C,
. 1
Then we obtain  a;= %_cﬁcf(z) dz.
We know that a., is the Res[f,zo]= Res[f,zo] = Zimgﬁc f(z) dz
¢ f(2) dz =2mi Res[f,z(]
If we know the Laurent series expansion for f(z), then using above equation we can evaluate contour integrals.

2
Example: ii.1. Evaluate gﬁc ez dzwhere C denotes the circle C = {z: |z| =1}with positive orientation.

-

Nh—-

r| b

Solution.
2
Let f(z) = ez
From Example.1, we have Res [f, 0] = 2

Recall 2. gives us §, f(2) dz = 2ni Res[f,z]

2
Hence §. ez dz = 2mi Res[f,0] = 2mi (2) = 4ni
Theorem 1 (Cauchy's Residue Theorem).
Let D be a simply connected domain, and let C <D be a closed positively oriented contour within and on the functionf(z)
is analytic, except finite number of singular z,,2,,....,z, , then
. n
$.f(2)dz = 2mi}, _ Res[fz]

W

0 C

&y
=]

& — 1
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Proof.
Let C; be the neighborhood of z;, (i=1,2...n) lies inside C such that all C;are disjoint.

Since each z; is a singular point of f and each C; is a neighborhood of corresponding z;(i=1,2,..n), f is analytic in and on C
except these neighborhoods C; (i=1,2...n).

Then by Cauchy’s Theorem,(Recall 1)
$.f(2) dz -gﬁclf(z)dz S —gﬁcnf(z)dz =0
=¢ f(z)dz = gﬁcl f(2)dz +...... + gicnf(z) dz

=>¢ f(z)dz =2miRes[f,z;] +..... + 2mi Res [f,z,] ( by Recall 2)

= ¢ f(z)dz =2mi Z:=o Res[f, z]

Note 1.1: The residue at zqdepend only the coefficient a;in the Laurent expansion, if f(z) has a
removable singularity at z,, then the Laurent expansion has no negative power term and
hencea.;=0 = Res][f,zq] = 0.

Theorem 2.(Residues at Poles).

(i)  Iff(z) has a simple pole at z,, then Res[f,zq] = z5 2, (z —z) f(2)
(i)  If f(z) has a pole of order 2 at z,, then Res[f,zq] = lim ((z —2)? f(2)
Z > Zy dz

lim

(iii)  If f(z) has a pole of order 3 at z,, then Res[f,z] = 21,2 - 7, az? (( —20)% f(2))

(v) Iff(z) has a pole of order k at z,

1 lim a*-

then ReS[f ZO] (k Nz =z, dzk 1 (

(z = 20)* f (2))

Proof.

i) Suppose f(z) has a simple pole at z = z,, then the Laurent series expansion
f(2) = Xnsoan (z—2)" +a_4(z—2)7"

= (2 -20)f(2) = (z-20) Y=o an (z — 20)™ + a4

= (2-20)f(2) = (z-20) Y=o An, (z — 2o)™ + Res [f,z0]

Taking lim z—z,, both sides

lim lim

2 70 Res[f Zo]

im (2= 20)f (2) = (220) Tieoan (2 = 2o)" +
= 0 + Reg|[f,z(]

Hence Res[f,z)] = 1im (z — 20)f(2)
z— Z0

V) Suppose f(z) has a pole of order k at z = z,, then the Laurent series expansion
f(2) =Yn—0an z —20)" +a_1(z—2z)) '*+a(z—2z)?+...... +a_i(z—zy)™"
Multiply both sides by (z-zo)*

(220@) = ae + ..o Ay (Z = 2) 1+ X an (2 29)" (2 — 20)*
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Differentiate both sides k-1 times with respect to z,

ak-

rk_ll(z —z)¢f(2) =0+0+....+a_;(k —1)! + %(210 a, (z —20)"(z — 2,)%)

= aq(k — D! +ag(z - zo)k! + a1(z — z9)* ((k';l)!) +

Taking lim z—z,, both sides

. . .
lim d—l(z—zo)kf(z) _ lim a_(k—1!+0+...
0

Z > Zgdzk-1 Z-> Z

a_,(k —1)! = Res [fzo] (k-1)!

1 lim gkt
Hence Res [fzo] = o= ZOW(Z - 20)*f(2)

ii) and iii) are the particular case of v) (take k = 2 and k= 3)

Example 2.1.

Find residue of f (z) =

e e
- at zp=1

ZZ
Solution.

eZ

. =& - ¢
Givent(@)= == = e

The poles of f(z) are z =1, z =-1 (simple poles)

lim lim (z-1)e? lim e? e

Res[f,l]:Z_)l(z—l)f(z): —— = £ =2

z51G@DE+)  z-51 @D 2
Example 2.2
Find the residue of f(z) = (z>- %), where o is any complex constant.

Solution.

: — (8. .8\l _ 1
Givenf(z) = (z*- 0°)" = ot

The poles of f(z) are the zeros of z®-w® = zeros are given by z%-0®=0

= 8= ® = 7* = 0¥(cos2nx +isin2nw), n =0,1,2,...7 = 2 = °® ™"

sz=ee™? 5 z=pe™* n=012,..7

nmi/4

Hence z=w ™" ,n=0,1,2,...7 are the simple poles of f(z)
Leta,=we™ ! n=0,1,2,...7

lim

The residue of f (z) at z=a, isgiven by Res [f, a,] = I (z—a,) f(2)
n
_ lim
_Z - a, (Z - an) (z8-a,8)

Since it is not easy to factories (z°- a,°) into eight factors , so we have to use L’Hospital’s rule
(that is differentiating Nr and Dr separately w.r.to z)

L E R T 4

“z-oa, 87  8dd
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Example 2.3

1

sinhmz

Find the residue of

Solution.

1
sinhmz

Given f(z) =

The poles of f(z) are the zeros of sinhnz,

Also the zeros of sinhnz are z = ni, for all integer n (since sinhnzi = 0 for all n)

Hence Res [f,ni] = . li)mm, (z —ni) prae—

By using L Hospital’s rule

Res[fnij= M 1 _ -1 ___1

, = - = (Since coshix= cosx)
Z > nl mncoshnz mcoshmni TTCcoSTN

=(-1)"/= (Since

1 cot(mz)

Example 2.3. Find the residue of f(z) = —— atz= 0
Solution.

. _mcot(nz) _ mcos(mz)
Given f(z) = z2 " zZsin(nz)

Since z% has a zero of order 2 at zo = 0 and sin(nz) has a simple zero 1 at zy = 0, we have
z%sin(nz) has a zero of order 3at z,=0 and mcos(nz) # 0.

Hence f(z) has a pole of order 3atz,=0.

By part (iii) of Theorem .2, we have

1 lim a2

Res [£.0] = 5750 2@ =0 f(@)
NG
= %Zli_)mo %(z nweot(nz)) = %Zli_)mo ;—Z( 7 cot(nz) — mzesc?(nz) )
1 lim «a

2750 2, Teot(mz) — n?zesc?(nz))

:%zli»mo (— mesc?(nz) m— miesc?(nz) + w222 csc(nz)csc(mz)cot(nz)m)

%Zh_)mo (— 2% csc?(mz) + 2m3z csc?(mz)cot(mz))

272 lim
250 csc?(mz) (— 1 + mz cot(nz))
9 lim 1 cos(mz)

- z—-0 sinz(nz)(_ 1+ mz

)

sin(mz)

lim (mzcos(mz)—sin(nz))
z—-0 sin3(1z)

Res [f,0] = n?

As lim z — 0, LHS is indeterminate, so we have to use L’Hospital’s rule to evaluate the limit
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(that is differentiating Nr and Dr separately w.r.to z)

2 lim (mcos(mz)— mzsin(mz)mw —Tcos(nz))

Res[f0] = z-0 3sin?(nz)cos(nz)m
- lim - n2zsin(mz)
z — 0 3msin2(nz)cos(nz)
) lim -mZ
= T[ A —
Z — 0 3sin (7z) cos(mz)
_ 2 lim - nz _—_ﬂlim(nz)lim(l)
T 32-50 sin (mz) cos(mz) - 3 z—> 0 \sin(nz)/ z = 0 \cos(nz)
_ -n? 1 lim 1 _ -n? _-n?
= Tz - 0 ()= 5 OO=7
z-0 nz
Example 2.4.

Find fCﬂ-{-;i%nz where C denotes the circle {z: |z| =3} with positive orientation.

>

Solution.

Let f(z) = L = ! = !

z%+ z3-272 z2(z2+z-2)  z2(z+2)(z -1)

The singularities of f(z) that lie inside C are simple poles at the points z =1 and z= -2, and a pole of order 2 at z =0.

To find the Residue at z = 0

_lim a4 2 _ lim 4 72
Res [1,0] “z-0 E((Z —0)*f(@) = z—> 0 dz * 22(z+2)(z-1) )

_ lim a 1 _ lim a 1

T 7250 az (z+2)(z—1) ) T z250dz N z22+z-2 )
_ lim —2z-1 1

T 250 (z2+z-2)2 4

To find the Residueatz=1:

_ lim _ lim 1
Res[fl] =", C-Df@ = ,¢-D zomas

_ lim 1 1

_Z — 1 z2%(z +2): 3
To find the Residue at z = -2 :

_ lim _ lim 1
Restf-2l =, 0 ,@+Df@ =, 0 @+ e

_lim 1 _ -1
Tz —22%2(z-1) 12
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By Cauchy’s residue theorem Sﬁc f(z)dz =2mi Z:=o Res|f, z;]

d . .—1 1 1
Je m = 2mi(Res[f,0] +Res[f,1]+Res[f,-2]) = 2mi(-+; ——) =0
Example 2.5. Find fc Zf; where C denotes the circle {z: |z-1| =2 } with positive orientation
z}‘
Iy . et}
o el 1 2 &
Zl:k_ .Zg
=g
Solution.
_ 1
Let f(Z) = i

To find the poles of f(z) , we know that poles of f(z) is nothing but the zeros of z* +4
Now we have to find the zeros of z* +4
Put z* +4 =0 =7* = -4 = 4i* = (2i)*>= 2% = +2i
Let z = a+ib = 7% = (a+ib)? = a® + 2iab — b?
Supposez?= 2i =a*-b*+ 2iab = 2i = a? —-b’=0 and ab = 1
= a’= blandb=1/a
=a=zxband b=1/a
Ifa=b,thenb=1=ab=1
Ifa=-b,thenb=-1=a=1,b=-1
The zeros are z = a+ib , 1+i, 1-i
Suppose z°= -2i =a’® —b*+ 2iab = -2i = a’—b’=0and ab = -1
= a=b* andb=-1/a
=a=zxband b=-1/a
Ifa=b,thenb=-1=ab=-1
Ifa=-b,thenb=1=a=-1,b=1
The zeros are z = a+ib ,-1-i, -1+i
Hence the poles of f(z) are 1+i, -1+i (simple poles)
The poles lie inside the circle {z: |z-1| =2} with positive orientation are 1+i

1
z%+4

lim
z-o>1+1

lim

ST G-+ f@ =

Res[f,1+i] = z-(1+D) G

As lim z —1+i, LHS is indeterminate, so we have to use L Hospital’s rule to evaluate the limit
(that is differentiating Nr and Dr separately w.r.to z)

lim 1 _ lim z 1+ _ 1+ _ 1+i

751410 ‘az® Ty 140 4zt :4(1+i)4_4(—4)_—16
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Similarly

Res[f,1-i] = —

1-i
—-16
By Cauchy’s residue theorem §3C f(z)dz =2mi ZZ=0 Res[f, z;]

dz . . P e BTIE o N
Jo=i =2mi(Res[f,1+i] +Res[f,1-i]) = i+ =) =-7

z4+4

Result 3.

Let P(z) be a polynomial of degree at most 2. If a ,b and c¢ are distinct complex numbers, then

f(Z) — P(z) — A + B + c
(z—a)(z—b)(z—0) (z-a) (z-b) (z-0)

_ __ P@
Where A =Res [fa] = yPS Yo

— ___P)

B = Res [f,b] = D=0
— —_ P©
C=Res[fc] = D)
Example 3.1.
. . _ 3z+2 . . .

Find the residue of f(z) = 2 DED and express f(z) in partial fractions.

Solution.
In Result I, take a=0,b =1, c=2 and P(z) = 3z+2.

The residues are

— — P(0)

A =Res[f,0] = DD
_ P

B = Res [f,1] o0 5
— — P(2)

C =Res [f,2] —m =

The partial fraction expression of f(z)is given by

f(z) = A, B, C
(z-a) (z=b) (z-0)

1 -5 4
= + +
(z=0) (z-1) (z-2)

1 5 4
= +

z (z-1) (z-2)

Example 3.2. Find the residue of f (z) = !

and express in partial fractions.

z4-1
=1 = L = 1 =4 L R
f(2) = z4-1  (22-1)(z2+1)  (z-D(z+D)(z+D)(z=i) z-1 o too o
- _ lim ., _ lim . 1
Where A =Res[f,1] = 75 1(z 1 f(2) =5 1(z 1) D@D DD
1 1 _1

= 2(1+i)(1-i)  2(1-(-1)) 4

- _ lim _ lim 1
B= Res[f-1] = zZ> —1(2 +D ) Tz —1(Z 1 (z=1)(z+1)(z+0) (z—0)
_ 1 _ 1 _ 1
T o2(-14)(-1-0) | 2(-1-1) | 4
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_ - _ lim i _ lim . 1
C=Res [fi] = z > i(z ORAC Tz i(z ) (Z-1)(z+1)(z+i)(z-1)
_ 1 _ 1 _ 1
T 2i(i+1)(i-1)  2i(-1-1)  4i
_ o _ _  lim , _ lim . 1
D=Res[f,-i] == 75 _i(z +1i) f(2) =, —i(Z +10) e D@ETDETIED
1 1 1

T 2i(—itD)(=i-1) = 2i(1-(~-1)) T

B c D 1 1 1 1

f(z) =

S trm o toa T 4z 1) 4(z+1) 4i(z—0)  4i(z +i)
Result 4.

P(2)

A B Cc

If a repeated root occurs in partial fraction, and P(z) has degree of at most 2, then f(z) = C

Where A =Res [(z-a)f(z),a]
B =Res [f, a]
C =Res [f, b]

z%43z+2
z2(z-1)

Example 4.1. Find the residue of f(z) = and express in partial fraction.

Solution.

InResult I, takea=0,b=1 and P(z) =z% + 3z + 2 , we have

_ P(2) _ A B c
@)= e “eor e F @
_ _ z2+43z+2 _ 2243242
Where A =Res [(z-0)f(z),0] = Res[z pT— ,0] = Res[z(z_l) ,0]
_ lim _yZit3ze2y o lim z%+43z42,
=200 @70 =, L0 Gy =2

22%43z42_ lim d  ;z%+3z42 _ lim d z%+3z+2

B =Res[f,0] = Z‘Lmo L @-0

2z-1) 7 — 0 dz 22(z-1) z > 0 dz (z-1)
lim [@z+3)@-D- W)(z+32+42)] iy [(z?-2z-5)]
Tz-0 (z-1)? Tz-0 ED? =
_ _ z2+3z+2 ., _ lim oy 2liH3z42
C=Res[f,1]=Res[; —~11= " (z—D(z,5)
lim ,z%+3z+2, _
“ro1 T D=0

_ -2 -5 6 _ -2 -5, 6
f(Z) T (z-0)2 * (z-0) + (z-1) 22 * z * (z-1)

Example 4.2. Find the residue of f(z) = Wl(z_”

Take P(z) =1,a=1, b=3

P(z) _ A B c

f(Z) = Z-1D2(2—3) T (z-1)? (z-1) (z-3)
~ ) N i 1 _ lim _ 1
A=Res [(-)f(2).1] = Res [ () g U= , o ¢~ D)
-t -1
Toa-3) -2

Novelty Journals
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B —lim da . 1 _ lim -1»_ -1
B =Res[f1] = ;1 (z—-1) (Z-12(z-3) 751 z-32 4
_ _ lim _ 1 _ lim 1 _1
C - RES [f|3] - 7= 3 (Z 3)((2_1)2(2_3)) - 7 — 3 (Z—l)2 - 4

4.  EVALUATION OF REAL DEFINITE INTEGRALS

Cases of poles are not on the real axis.
Type |

Evaluation of the integral fozn f(cosOsinB)dO where f(cos0 sin0) is a real rational function of sin0,cos0.

First we use the transformation z = € = cos + i sinf ------ (a)
1_ L N (N T
And ~=p=e cos0 - i sinb (b)

From (a) and (b) , we have cosf = § (z+ i) , sinf = % (z - i)
Now z = €' = dz = ie"do = do =§
Hence [ f(cossin6)d6 = [ f[3(z +3),= (z - D]
Where C, is the positively oriented unit circle |z] = 1
The LHS integral can be evaluated by the residue theorem and
fcf[% (z + é) ,Zli(z — é)] % =2mi Y, Res(z;) , where z; is any pole in the interior of the
circle |z =1
Example 1.1.
Evaluate fozn e =% cos(nb + sinf) d@, where n is a positive integer.
Solution.
Letl = fozne‘c"sg [cos(nf + sinf) — isin(nh + sinh)] d
— fOZHe—cose e—i(nO+sind) jg = J‘Ozne—cosa—isina e~ gp
— fozne—(c059+isin9) e—in0) g9 = f02"e—ei9 e-im0) qp

Letz=e" dz=ie"do=do= i% = % and C denotes the unit circle [z| = 1

~Z (d 1 ~Zd
Therefore | = fCeZ—n(—z) = oot

zi

= J.f(2)dz where f(2) = %

By Cauchy’s residue theorem, [ o f(2)dz =2mni} Res[f,z] where z, are the singularities(poles) of f(2)
To find the poles of f(z) :

Since poles of f(z) = to the zeros of iz™* ,and the only zero of iz™" is z = 0 of order n+1

Hence the pole of f(z) is z =0 of order n+1

There are no poles on the real axis

To find the residue of f(z):

1 lim a" 1 lim a" e”?
R f - —(z — n+1 7) =— —(z — n+1
€s [ ’O] n 7z — (Qdz" ( 0 ) f( ) n z — (Qdz" ( 0) izn+1
-1 lim d" pype® _ 1 lim ave® _1 lim (_1)n£
nl 7z - (dz" izn+1 nl 7z > (0dz" i nl'z—- 0 i

_ ="
Tl

Hence Y’ Res[f,z] = Res[f,0]=

="
nli
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Therefore [, f(z)dz = 2miy, Res[f.z] = 2ni S =22 &0

(- 1)"

=>1=2n

=> fozne_“’sg [cos(nb + sinB) — isin(nb + sinb)] d6 =2n (_nl!)n

> fom e =959 cos(nf + sinf) do — ifozn e=s% sin(n + sinf)] do = 2n (_n;])n
Equating real and imaginary parts,

2T _osO i _ (D"
Jy €7 cos(nf + sinf) d6 =2 —

And fozne‘c"se sin(n@ + sinf)]do =0

Example 1.2.
21
Prove thatf oo © T ,a>b >0.
Solution.
_ r2m  db
Let]= fO a+bcosb

Putz=e" = do= % and let C denotes the unit circle |z| =

. i .. 1 .. 1 1
Since z =€ = cos0 + isind and - = cosf — isinB, we have cos = > (z+ ;)

de 1 dz 1 dz 2 dz
|—f0 +bcosf __'fC b 1 __‘fC z2b b _;fC 24, ,2
a+bcos i z<a+5(z+—)) 3 za+524 Lot 25tz +1
z

2

bi(z2+25%+1)

= J.f(2)dz where f(2) =
By Cauchy’s residue theorem, | o f(2)dz =2ni} Res[f,z] where z, are the singularities(poles) of f(z).
To find the poles of f(z):

Poles of f(z) = to the zeros of bi(z> + % +1) and the zeros are given by bi(z?+2% =2+1)=0

2

= (47,7 +1) =0 -+ (a)
2 2_ap2
- 2b B b

—a+Ja2-p2 —a—-+a2-b2 .

o7 =% : or = : are the simple poles of f(z)
—a+Ja2-p2? —a—Ja2—p2 .

Let o= % and p= /X2 : , these the roots of the equation (a)

Now the product of the roots aff = % =1
Now | ap|=1= |o||p| =1
—a—-+az-p2

b

_ |a+va?-p2

- b

Sincea>b>0, |B| =

Here a>b=a’>b*=a%-b>0=>vVa2 —b2 >0=>a+Va? —b?2 >a>b
— 2_pH2
Sa+vVaZ—b2 >h= ‘”7Vab >1> ‘”7“21’|>1
—a++ya?-b?
b

Hence z=a= < 1is the only simple pole lie inside the circle |z| =

There are no poles on the real axis
To find the residue of f(z):
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Res [f,o] = lena(z —-a) f(2)

2 2. 2az
= —Sa— += 4+
Here f(z) b2 and o, are the factors of z p 1
_ 2 _ 2
= f(z) = bi(22+2$+1) " bi(z—a)(z-B)
lim lim 2 lim 2 2
~ Res [fa] = —a = -—a) ——— = =
eslhe] = L@~ S@= D s 2o a bieh) b

2

B bi((-a«/m)_(—a—\/m >> - %i(—ah/rbzﬂzh/m)

2 1
B 2iJa2-b? - iva2-b2

b b

1

Hence Y Res[f,z¢] = Res[f,a]= -
L

a2-p2
. 2mi 2

z)dz =2miy Res[f,z ] = =
J.f@ ¥ Reslf] = e = =
. f2n' dae _ 21
"J0  a+bcosd Jaz-p2
Example 1.3.

21 dae

_— <a<
Prove that [~ ————=—"—-.0<a<L
Solution
_ [m do

Let]= fO 1+a%-2acosf

Letz=e'=do= % and let C denotes the unit circle |z = 1

. ; . 1 . 1 1
Since z = e = cosb + isin® and - = cosf —isinf, we have cosd = 7 (z+ ;)

dz dz dz
= f2n dae — f iz -1 5 - lf 5
N 0 1+a?-2acos6 € 1+a2-2a(3)(z+;) 9 (1402 a(zi+1) iJc (1+a2)z;a(22+1)
_1 dz _1 dz _ -1 az _ -1 dz
i fC (1+a?)z-a(z2+1) IfC Z+a?z—az?-a  ai fC %Z—az 2241 ai f(; m
a
- -1 dz -1 dz _
T fc z(%l+z )—a(z —%) ai J.C (_714.2 )(z—a) fC f(2)dz

Where f(2) = —=—

al(%l+z )(z—a)

By Cauchy’s residue theorem, fc f(2)dz =2mni} Res[f,z] where z, are the singularities(poles) of f(z).

To find the poles of f(z):

Poles of f(z) = zeros of ai(— i +2)(z —a) and

these zeros are given by ai(—% +2)(z—a)=0

= (-z+2)=00r(z—a)=0

>z= i or z = a which are the simple poles of f(z)
Since 0<a <1, %>1

Hence a<1 is the only pole lie inside the unit circle |z| =1

There are no poles on the real axis
To find the residue of f(z):

Res[f.a] = Z‘i“a(z —a) f(2) = Z“_‘)“a(z Ca)

ai(%l+z )(z—a)
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_ lim -1 _ -1 _ -1 _ 1
Tzoa ai(%l+z) B ai(%1+a) T i(-14a?)  i(a®-1)
Hence Y Res[f,z] = Res[f,a] = '(a21—1)
2m

~J.f(2)dz =2mi} Res[fz] = l(az 1) = @D
=)= 2

T (a%-1)
= f21r do _ 27

1+a2-2acosf  (a2-1)
Example 1.4.
T adf

Evaluate fO Ziein?0

Solution.

First we have to change the limits to 0 to 2z from 0 to 7 for the given integral.

™ adf adf T 2a do
Letl = = =
fO a?+sin26 f p1=cos26 50529 fO 2a2+1—cos26

To change the limit , take 20 = ¢ = 2d0=d¢
[f6=0,thenp=0
If 6==, then ¢ =27

ado

27
Hence | = fO 2a%2+1—cos¢

Putz=e" = dy= ‘:—ZZ and let C denotes the unit circle |z| =

. - . 1 . 1
Since z = e = cos¢ + isin and - = cos¢ — isind, we have cos¢ = > (z+ i)

dz dz

“l= f2n$ :f I.Z f iz
0 2a2+1-cos¢ C 2a2+ 1__ (z + ) C 4za?+2z— (22 +1)

2z

2a dz -2a dz
=24 %2 =A% = dz
i fC 4za?2+2z-z2%-1 i fC z2-2z(2a%2+1)+1 fo( )
—-2a

Where f(z) =

i(z2-22(2a2 +1)+1)

By Cauchy’s residue theorem, fc f(2)dz =2mni} Res[f,z] where z, are the singularities(poles) of f(z).
To find the poles of f(2):

Poles of f (z) = zeros of i(z°-2z(2a?+1)+1) , these zeros are given by i(z?-2z(2a?+1)+1) = 0

= 7%-27(2a°+1)+1=0

2(232+1)iJ(2(2a2+1))2 -4(®) 2(2a%+1)+2 ((2a2+1))2 -1

2(1) 2
=2 +1+/Q2a2+1)2—1 =2a*>+1+V4a* +1+4aZ -1
=2a®>+1+V4a* +4a? = 2a®> + 1+ 2ava? +1
z= 2a*+1+2ava?+1 =a(say)
Or z=2a? +1—2ava? + 1 =P (say)

Hence the poles of f(z) are o, which are simple poles.

=>z=

Now o, are the roots of the equation z>-2z(2a°+1)+1 =0

Product of the roots af =1 = | aff| = 1=]a)|p| =1

Clearly [a] = [2a? + 1+ 2aVaZ +1 |>1=|p/<1

<. the only pole lie inside the unit circle |z] =1 is p = 2a® + 1 — 2aVa? + 1
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There are no poles on the real axis
To find the residue of f(z) :
Res[f,p] = ﬁ(z -B)f@) =, ﬁ(z B

2a
i(z2- 22(2(12 +1)+1)

lim -2a -2a _ -2a

- Z —>ﬁ( -B i(z— a)(z B) - z- B iE-a - i(B-a)  i(za?+1-2ava?+1 —(2a2+1+2a\/a2+1))
- -2a - -2a - 1
i2a?+1-2aa?+1 -2a2-1-2avya?+1)  i(-4ava?+1) 2iva?+1)
= =
Hence )’ Res[f,z] = Res[f,B] 21\/@)
_ T
~f.f(2)dz =2miy Res[f,z] = — JaZ—) = T
_ (m adf _ T
=1= fO aZ+sin2 Jaz+1)
Example 1.5.
Evaluate fo W (a>0,b>0;a>h)
Solution
_ r2m dae
Letl= fO (a+bcosH)?

Takez=¢€"=do= % and let C denotes the unit circle |z| =

. i .. 1 .. 1 1
Since z =€ = cos0 + isind and - = cosf — isinB, we have cos = > (z+ ;)

dz dz .
=1 = iz = iz = -
v e A
2z

zdz _ 4f zdz
C (2az+bz2+Db))?

= [ f(z)dz wheref(z) = m

By Cauchy’s residue theorem, fc f(z2)dz =2mni} Res[f,z] where z, are the singularities(poles) of f(z).
To find the poles of f(2):

Poles of f(z) = zeros of i(2az+bz?+b)?, these zeros are given by i(2az+hz*+b)? = 0

= bZ%+2az +h=0= 7%+ 2az+1 0

2a, [2a,
)Y _2asV4a?-4b? _ —atJaZ-b2

=z=

2 2b b
ﬁz__a-'-— var- = B (say)
OrZ:_a_Ta_b2 = o (say)

Hence the poles of f(z) are o, both order 2
Since a,p are the roots of the equation bz*+2az +b = 0
Product of the root af=b/b=1=|af|=1= |a||f|=1

Given a>b=a’>b*=a%b>0=>Va2 — b2 >0=>a+Va?—b2 >a>b
2_p2 2_pH2
> a++VaZ — p2 >p o THve b7 V‘;b > 1= [#Hves=bt V‘Zb|>1
—a++ya?-b2
b

Hence z=p= < 1is the only pole lie inside the circle |z| =

There are no poles on the real axis
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To fine the residue of f(z):

lim a _lim a 2 4z
Res [f,p] = Z_>de( z=PB)’f(2) = Z_)de( —ﬁ)m
_lim a 2 4z _ lim a 5 4z
Tz BE(Z_B) ib2(z-a)@-p)?  z— Pdz 2= B) o pe
_lim 4 4z _lim 4 d_ z _ lim 4 (z—a)z—zz(z—a)] _
Tz B dzib2(z-a)2 7 = B ib2dz (z-a)2 7 — B ib2 (z—a)* -
lim ( _ )[(z a) — 22 _ lim 4 (z—a) 22] _ 4 (B-a) -2B
Tz B lbz z (z— a)4 Tz B ib2 (z—a)3 ~ b2 (B-a)3
a—«/a2 b2 —a+«/a2 b2 —2a
e I ]:__4 a+p " b
ib? L(-a)? ib? L (B- 0‘)3 lbz —a+m —a—«/m (—a+\/a2—b2+a+Va2—b2)3
b b b
—2a
_—4 b

8ab3
8b3 Jaz-pz b2 a2 b2
b

Ti? (@)3
Hence ) Res[f,z] = Res[£,p] = i(azﬁz)

2mia _ 2ma

i(Vaz=p2)  (Jazop2)’

~f.f(@)dz =2miy Res[f,z] =

== IZn ao _ 2ma
~ Jo (a+bcos)2 (Wf

Type II.
Evaluation of the integral f°° f(x)dx where f(x) is a real rational function of the real variable x

g (X)

If the rational function f(x) = , then degree of h(x) exceeds that of g(x) and g(x) # 0.To find the value of the integral,

by inventing a closed contour in the complex plane which includes the required integral. For this we have to close the
contour by a very large semi-circle in the upper half-plane. Suppose we use the symbol “R” for the radius. The entire
contour integral comprises the integral along the real axis from —R to +R together with the integral along the semi-circular
arc. In the limit as R—oothe contribution from the straight line part approaches the required integral, while the curved
section may in some cases vanish in the limit.

The poles z,,2,,....,z of ‘ZEX; that lie in the upper half-plane
f_iof(x)dx = foo 909 ax = 2miy. Res[f,zy]

© h(x)
Example 11.1

dx

Using the residue of calculus compute f o D 1D)
Solution

1
(z2+1)(z%+4)

Consider the integral fcf(z)dz where f(z) =
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To find the poles of f(z) :

The poles of f(z) = zeros of (z2+1)(z*+4) , these zeros are given by (z°+1)(z*+4) = 0
= 7+1=00r 2°+4=0

> =-1=i’=z=%i

Or 22 =-4=Qi)*=>z=+2i

Hence the poles of f(z) are + i, = 2i (all are simple poles)

And the poles z =i and z = 2i are the only poles lie inside the upper half of semi-circle.
There are no poles on the real axis

e
=xn ==
n =4
I
—F —= — 1 i = p =8
—7 ==

—Fn

By Cauchy’s residue theorem, fc f(2)dz =2mni} Res[f,z] where z, are the singularities(poles) of f(z).

Now [.f(2)dz = ffRf(x)dx + fCRf(z)dz ————————————— (@) (‘on the real line —R to R (Lg)+ the upper half of the semi
circle Cg)
To find the residue of f(z2):

o _ lim . _ lim . . 1 __ lim . 1
Res[f,i] = 7 i(Z —1) f(2) PN l,(z i) (22+1)(z2+4) | 7z > l,(z D) (z +i)(z —i)(z+20)(z—2i)

_ lim 1 _ 1 _ 1 _1_ i
T 72 50 @+)(+20)(z-20) (i +)@+20)@i-20) (DB 6 6

lim , _ lim ey 1 __ lim Y 1
L2720 @ = 5= e T - 2% 7 2D Grne—bernean

Res[f,2i] = .

lim 1 1 1 -1 _ i

T 5 20 DE D) | QieDG+2D@it2) | OGED@) 12 12

. _ 1 dz |dz|
Consider |fch(Z)dZ | - |fcR e P |S leo| Grrnaen | = o @mena@ea

- |dz|
= Jer (2PP-1)(zlP-»)

Let z = Re”, dz = iRe"d0

= |dz| = |iRe®dd| = R d0 (- |i| =1 =[]
Ifz=-R, thenRe*=-R=e’'=-1=20=xn
Ifz=R,thenRe*=R=2e"=126=0

Hence (b) = |fCRf(Z)dZ |S fon

Rm
ASR—>®,m—>0=>fCRf(Z)dZ —0

(b)

RdO _ R fn' _ Rm
(R2-1)(R%2-4) _ (R2-1)(R%-4) 0 T (R2-1)(R%2-4)

Now as R— o, (a) = [ f(2)dz = [, f(x)dx +0=[" f(x)dx

1

Where f(x) = @iy
o 1 [ee] .
Hence f_wmdx = f)dx= [ .f(2)dz =2mni}y Res[fz]

— 2mi{Res[f,i] + Res[£.2i]} = 27ri{%i + E y=2mi( ;—Zi) =z
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Example 11.2

o dx

Using the residue of calculus compute f—mm

Solution

Consider the integral [ f(z)dz where f(z) = ﬁ

To find the poles of f(z):

Poles of f(z) = zeros of (z%+4)°, these zeros are given by (z*+4)* =0
=72 +4=0= 7" =-4 = 72 = (2i)?

S>z=+2i>z=2iorz="-2i

Hence the poles of f(z) are z = 2i, z = -2i , both of order 3

En

T e

—Eﬁ."}ZZ

The only pole lie inside the upper half of the semi-circle is z = 2i of order 3
There are no poles on the real axis

By Cauchy’s residue theorem, | o f(z)dz =2ni} Res[fz,] where z, are the singularities(poles) of f(z).
Now [, f(2)dz = ffRf(x)dx + fCR f(z)dz (onthe real line —R to R (Lg)+ the upper half of the semi circle Cg)
To find the residue of f(z):

1 lim a2

Res[f,2i] = - (z—20)*f(z) = 2 WM 2 9y

@'z > 2jdz? 27 - 2jadz?

(z2+4)3

. 2 i 2
_1 lim 4 (z—2i)? 1 _1 lim d—(z—Zi)3 1

T 275 2jdz? ((z-20)(z+20))3 27 — 2jdz? (z-21)3(z+21)3

_1 lim ¢* 1 _1 lim d_i( 1 ) 1 lim i(—3(z+2i)2>
T 27 2idz2 (z+20)3 27 > 2idz dz \(z+2i)3 27 = 2idz \ (z+2i)¢
_1 lim d( -3 ) _1 lim (3(4)(z+2i)3) _12 lim ( 1 )

T2z 2idz \@+20t) T 275 2i\ (z+20)8 27 > 2i\(z+20)5

_ 1 _ 6 _ 6 _ 3

- 6((2i+2i)5) TGS T 1024i 5121
. _ 1 d |dz]|

Consider |fCRf(Z)dZ | - |fCR (z%2+4)3 dz |S fCR | (22+Z4)3 | = ICR |(zz+z4)3|

S e (b)

~YCR (|z|2-4)3

Let z = Re”, dz = iRe"d®

= |dz| = |iRe®dd| = R d0 (- |i| =1 =[]
Ifz=-R,thenRe®’=-R=¢e’=-120=x
Ifz=R,thenRe®=R=2e"=1260=0

Hence(b)$|fch(z)dz|§ e i

0 (RZ-4)3  (R%-4)%-0 (R2-4)3
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AsR—»oo,R—n—>O=>fCRf(z)dz —0

(R2-4)3

Now as R— oo, (a) = [ f@dz = [ fl)dx+0=["_f(x)dx

Where f(x) =

( 2+4)3

Hence [~ mm =7 fdx = [ f(z)dz =2miy Res[fz]

= L
=2ni{Res[f,2i]} = 2ni{ — s }— -
Example 11.3
2_x+2)dx _5m
Prove that [ mi(x”mxz”) ==
Solution
. . _ (2%-z+2)
Consider the integral fcf(z)dz where f(z) = Gri10z249)

To find the poles of f(z):
Poles of f(z) = zeros of z*+10z°+9 , these zeros are given by z*+10z*+9 =0
= 7*+7°497°+9=0 = (2+1)(z*+9) = 0

Z’=-1=i orz>=-9 = (3i)°

=>z=%iorz=43i

Hence the poles of f(z) are i,-i,3i,-3i (all are simple poles)

=t

The poles that are lying the upper half of the semi-circle are i,3i

There are no poles on the real axis

By Cauchy’s residue theorem, | o f(2)dz =2mni} Res[f,z] where z are the singularities(poles) of f(z).

Now [, f(z)dz = f_RRf(x)dx + fCR f(z)dz (onthe real line —R to R (Lg)+ the upper half of the semi-circle Cg)
To find the residue of f(z):

11m lim . . (®-z+2 _ lim , . (z22-2z+2)

Resl[f,i] = ( —Df@)= z- 1( D Gtz - z - i(z ) (z—i)(z+0)(z+31) (z—30)
_ lim (z%-2+2) _ (i%-i+2) _ 1-i _1-i

T 7 5 (z+D(z+30)(z-30) | ((+D(i+30)(i-30)  (20)(4)(-20)  16i

lim . _ llm (22-2+2)
Res[f,3i] = 5 3 (z-30) f(z)= ( 3i) i 107749)
lim (z - 30) (22-2+2) _ lim (22-2+2) _ ((BD)2-(3D)+2)
Tz 3i (z-0)(z+0)(z+30)(z-31) 7 — 3i @-D(z+i)(z+30)  (3i—i)(3i+i)(3i+30)
__T7-31  _ -(743D) _ 7430
T QD@6 | -48i 480
. (z%2-2z+2) (z%2-z+2) dz |(z2-z+2)|| dz|
Consider Cr f(2)dz | |fCR (z*+1022+9) |— Cr | (z*+1022+9) = fCR I(z*+102%+9)|
|(z%-z+2)|| dz| < (Iz]2—|z|+2)|dz]| (b)
T UCR |(224+1)||(2249)] T YCR (z]2-1)(|z|2-9)

Page | 38
Novelty Journals




- Novelty Journals ISSN 2394-9651

International Journal of Novel Research in Physics Chemistry & Mathematics
Vol. 2, Issue 1, pp: (13-53), Month: January - April 2015, Available at: www.noveltyjournals.com

Let z = Re", dz = iRe'’d0

= |dz| = [iRed6| = R d6 (- |i| =1 =|e"’])

Ifz=-R,thenRe’=-R=e’=-120=1

Ifz=R,thenRe’=R=e"=126=0

Hence (b) = |fCR f(2)dz |S Iy #&2—9) - Iy #1(;—9) Iy (Rz—j;i(iz—‘a) - (R2—11;(2R2—9) Jg o -
S [T do +———— [T dB

(RZ-1)(R%-9) (R?2-1)(R?-9) ~0

2
R°m Rm N 2

T DR (R-D(RE-9)  (RE-1)(R2-9)

R?m 0 Rm 50 and 2m
* RP-D(R?-9) Cw-nw-9) N RoD®Re )

Now as R— o, (a) = [ f(2)dz = f_woof(x)dx +0 :fjooo flx)dx

AsR —

—0 :fCRf(Z)dZ —0

(x?-x+2)

(x*+10x2+9)
o (x2-x+2) _ [ _ oAl
Hence f_mmdx = f_oof(x)dx = fcf(Z)dZ = 27'[12 Res[f,zk]

.o (1-i 7+3i . (3-3i+7+3i 107 51
o [l ) gy (st o s
161 481 481 24 12

Where f(x) =

Example 11.4

d
Evaluate fooo ﬁ

Solution

Let us take ffooo x:f;‘;

Consider the integral fcf(z)dz where f(z) = 241—‘14

To find the poles of f(2):

Poles of f(z) = zeros of z*+a* , these zeros are given by z*+a* =0
s7'=-a' =7'=3a%" (v " =-1)

= 7% = glein gi2m (< pi2m = 1)

innm _ o dniCnthr

ae

=z=ae®@ 101723

=74 =a%

in/4

P 1 i
Ifn=0,z=ae =a(cos%+lsmg) =a(\/—7+é) = q (say)
= =gl = 3% L isin®™®) za(2+ 4y =
Ifn=12z=ae —a(cos4+lsm4) a(ﬁ+\/§) B (say)

— _ 4 piSTA _ T TR
Ifn=2,z=ae —a(cos4+lsm4) a(ﬁ+ﬁ) v(say)

4 _ VLR, NS S N
—a(cos4+151n4) a(\/E ﬁ) d(say)

Ifn=3,z=ae

5 Ty

=i Sl

—rxnan I

The poles lying inside the upper hemi circle are ae™* =a. , ac®™* = B (both are simple poles)
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There are no poles on the real axis
By Cauchy’s residue theorem, | o f(2)dz =2mni} Res[f,z] where z, are the singularities(poles) of f(z).

Now [, f(2)dz = f_RRf(x)dx + fCR f(z)dz (onthe real line —R to R (Lg)+ the upper half of the semi-circle Cg)
To find the residue of f(z):
Res[fa] = "™ z-a) f) = " @ - )

S a z4+a*
It is difficult to solve while factorlng —— and taking limit, so we will use L’Hospital rule (that is differentiating Nr and
Dr separately w.r.to z)
lim 1 _ 1 _«a
T 7o q4z3 " 4a3 aat
Nowa=ac™ =o' =a%e™ =a*=-a* (ve"=-1)
in in
aet _ _e*
“Reslfa]l= —15= " = i@
Now p=ae™ = pi=a%el™ =pi=a' (ve¥"=-1)
sin sin
.. _ 1 _ B __ae#? __et?
Similarly , Res [f,B] = B g pyr e
. 1 dz ldz|
= _ < <
Cansider |fCRf(Z)dZ | |fCR z4+a* dz |_ fCR | z4+a* < fCR |z%+a%|
ldz|
= CR |z|*—a* (®)

Let z = Re", dz = iRe"d0

= |dz| = |iRe®d0| = R d6 (- |i| =1 =[e”|)
Ifz=-R,thenRe®’=-R=e’=-120=1
Ifz=R,thenRe’=R=e"=120=0

Hence(b)=>|fCRf(z)dz |§ G R L

(R*-a*) ~ (R*-a®)-0 ~ (R*-a%)

As R — oo, (Rff”aﬂ—»o > J, f@dz =0

Now as R— oo, (a) = [ f(2dz = [ f)dx+0=[" f(x)dx

Where f(x) -( 4+a4)
Hence [~ mm =7 fdx = [ f(z)dz =2miy Res[fz]
in i3m
—'£_£_2m — _m o1 e L
72‘“1{'4‘13 4-a3}_ {e4+e4}_ 2a3{(\/§+\/5) +(\/§+\/E)}
_ 2 _ m
T 2v2a3 T V243
_ %) 1

We know that [ wmdx = 2f; md"

o) 1 1 _ T

fU (x4+a*) x = Ef—w (x*+ah) " 2v2a3

Type I11.

Evaluation of the integral f_wwf(x)sin mxdx |, ffowf(x)cos mxdx where m > 0 and f(x) is a real rational
function of the real variable x

g()

If the rational function f(x) = ==, then degree of h(x) exceeds that of g(x) and g(x) # 0.
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Letg(x) and h(x) be polynomials with real coefficients, of degree p and q, respectively, whereq > p+l1.

If h(x)#0 for all real x, and m is a real number satisfying m> 0, then

gx) g(x) g(x)

fooooflE ;cos mx dx = limg e [ R oy COS X dx and [~ o oy Sinmx dx = limg_e [ R e SInmx dx

We know that Euler’s formula e™™* = cos mx + i sin mx , where cos mx = Re[e™*]

and sin mx = Im[e‘™*] , m is a positive real.

We have |~ wgzxi emxdx = [ OO‘ZE icos mx dx +i [* gé gsmmx dx

Here we are going to use the complex function f(z) = %e"mz to evaluate the given integral.

I~ igxi cos mx dx = Re {2mi ) Res[f,z]} and

I ‘ZE ismmx dx =Im {27 Y Res[f,z]}, Where z;,2,,.....z are the poles lies on the upper half of the semi-circle.

B

Cr,

Wy
& =z

oz L R-51

Lemma III.1.(Jordan’s Lemma)

If f (z) — 0 uniformly as z —oo, then limg_,q, fCl e'™ f(z)dz = 0, (m > 0) where C; denotes the semi-circle |z = R, 1(2)
> 0.

Proof.

Given f(z) — 0 uniformly as z —o0

=givene>0,3aRy>0suchthat|f(z) - 0|<e,VR> Rq

Thatis |f(z)|]<e,VR> Ry ----—---- (@)

Let |z] = R which is the semi-circle

Putz=Re®=>dz=Re®id0=>dz=1izd0, 0<0 <=

i0

Now eimz = pime = plimR(cosO+isind) — ,imRcos@—mRsind — ,imRcos6 ,-mRsing

imR(cosO+isinb) | — imRcos6 -mRsinf| — —mRsing o] piMmRcOSO | —
= |e'mR V= e lle | = e (~le | =1)----(b)
sin@ . . . T
We know that — I8 monotonically decreases as 0 increases from 0 to >

LT .
1f0<0<T, then Zp2-< %1
2

sinf . 26

sin@
= sinf > —
[ T

0

=

=

<

SIS

<

~|.:||>—\

20 .
=- —>-5ind
T

mR26

= - ——>-mRsind

mR26 )
= e = ze—mRsme ______ (C)

From (a), (b) and (c),
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|, e™ f(2)dz| = [, le™ f(2)dz|
<J., le™ lIf (D)]ldz|
<& [y e mRsind R dp ( * |dz| = |izd®| = |z|d® = Rd0)

<2¢R foE e—mRsiang

_mR26

<2R [z e = df

_mR207
eT m |—
< 2¢eR [Wl 2

T

<2eR{(e ™) —— - () 5 — }

—2mR

2eRm e _mR
SZmR{( € +1}

Ely ,—-mR & f_,—-mR
Sm{ e +1}=— ({—e +1}<1)
| ., e™ f(2) dz| <Z=¢ (say)
AslimR — oo, |fcleimzf(z)dz—0| <€
= fcleimzf(z)dz—>0asR—>oo

Example I11.1.

-ma

cosmx e

Use the method of contour integration to prove that [, (x2+a2)dx = —— and
© sinmx _
fo (x2+a?) =0
Solution.
ider the integral here f(z) = 5
Consider the integra fcf(z)dz where f(z) = Gra

To find the poles of f(z):

Poles of f(z) = zeros of z*+a? , these zeros are given by z°+a* =0
> 2=-a’=2z=(a)’=>z=+tai=>z=aiorz=-ai

Poles of f (z) are ai, -ai (both are simple poles)

There are no poles on the real axis

e

=i

The only pole lie inside the upper half of semi-circle is z = ai

By Cauchy’s residue theorem, | o f(2)dz =2ni} Res[f,z] where z, are the singularities(poles) of f(z).

Now [, f(z)dz = f_RRf(x)dx + fCR f(z)dz (onthe real line —R to R (Lg)+ the upper half of the semi-circle Cg).
To find the residue of f(z):

imz

Res[fai] = Z‘Lmai(z —a) f)= M gy & 2 Mmoo gy e

z > ai z2+a?) 7z > qi (z —ai)(z+ai)
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llm elmZ elmal e—ma

z > ai (z+ad)  (ai+aid)  2ai

lim 1 _
Now 7 — o0 (z2+a?) 0
lim f eimz

R — 00 7CRr (z%2+a?)

dz =0

~ by Jordan’s lemma ,

AsR — oo,
imz

o lim e o elmx
o f @z =7 fedx+ MM gy = 17 x40

R —» o

o elmx
= ——-ax
f—oo (x2+a2)

-ma -ma

e

_ A ) _
Hence [° o r 2+a2) x = [ f(2)dz =2mi} Res[f,z] = 2ni S T
o cosmx+isinmx me~ma
= =
f (x2+a?) d a
foo cosmx lfoo sinmx _me™ma
oo (x2+a2) 0 (x2+a2) a

Equating real and imaginary parts,

foo cosmx dx:n'e;m and J-oo sinmx dx =0

— (x2+a?) ® (x2+a?)
foo cosmx foo cosmx _ me"ma
0 (x2+a2) °°(x2+a2) 2a

Example 111.2.
CcoSXx
© (x2+a2)(x2+b?)

Apply the calculus of residue to evaluate f dx,(@>b>0)

Solution.

elZ

Consider the integral . f(z)dz where f(z) = e
To find the poles of f(2):

Poles of f(z) = zeros of (z2+a?) (z*+b?), these zeros are given by (z°+a°) (z*+b?) =0
> 2=-a°or?=-b* 2z=(ai)?orz=(bi)’=>z=+aiorz=+bi
=z=aiorz=-aiorz=biorz=-bi

Poles of f (z) are ai,-ai, bi,-bi (all are simple poles)

There are no poles on the real axis.

—ai
—Fn

The poles lie inside the upper half of semi-circle are z = ai, z = bi

By Cauchy’s residue theorem, | o f(2)dz =2ni} Res[f,z] where z, are the singularities(poles) of f(z).
Now [, f(2)dz = f_RRf(x)dx + fCR f(z)dz (onthe real line —R to R (Lg)+ the upper half of the semi-circle Cg).
To find the residue of f(z):

elz
(z2+a?)(z%+b?)

Res[f.ai] = l‘ma.( —ai) f(2) = hmal(z—ai)
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lim eiz lim eiz

:Z - ai( - ) (z+ai)(z—ai)(z+bi)(z—bi) = Z = al (z+ai)(z+bi)(z—bi)
_ eiai _ e—a _ e~
T (ai+ad)(ai+bi)(ai-bi)  2ai(a®-b2) _ 2ai(b2-a?)
Similarly,
o lim . _ e”b
Res[fbi] = ", .(z=Dbi) f(2) = ;s
Now lim S —

Z > (z2+a?)(z2+b2)
By Jordan’s Lemma,
iz

lim f e dz =0

R — 00 7Cr (z2+a?)(22+b?)
AsR — «,
_ hm eiz _ oo eix
fcf(z)dz - f—oo f(x)dx + R — 00 fCR (22+a2)(22+b2) dZ - f—oo (x2+a2)(x2+b2) dx +0

elX

= Lo tmrancamn &

S elx -a -b

e
Hence f-m (x2+a?)(x%+b?)

e
2ai(b%2-a?) Zbi(az—bz)]

dx = [ f(2)dz =2y Res[f,z]=2ni [

_ 2mi(be”%—ae~b) _ m(be~%—ae~b)

2abi(b%?-a?) ab(b%-a?)

N foo cosx+isinx _ n(be~%—ae~b)
= (x2+a?)(x%2+b?) ab(b?-a?)

Equating real and imaginary parts,

foo cosx _ n(be"%—ae”b) sinx

oo
® (x2+a?)(x2+b?) T ab(b?-a?) and f—°° (x2+a?)(x2+b?) dx =0

Example 111.3

© XCOSX o xsinx
Evaluate [~ ——-dx and [ ——=-dx
Solution
. R _ Zeiz
Consider the integral [, f(z)dz where f(2) = 2

To find the poles of f(2):

Poles of f(z) = zeros of (z*+4), these zeros are given by (z*+ 4) =0
272=-2=27=(Qi) 2z=+2i

=z=2iorz="-2i

Poles of f (z) are 2i,-2i (both are simple poles)

There are no poles on the real axis.

The only pole lie inside the upper half of semi-circle is z = 2i
By Cauchy’s residue theorem, | o f(2)dz =2ni} Res[f,z] where z, are the singularities(poles) of f(z).
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Now [.f(2)dz = f_RRf(x)dx + fcR f(z)dz (onthe real line —R to R (Lg)+ the upper half of the semi-circle Cg).

To find the residue of f(z):

lim lim . zelZ lim . zel?

ReS[f,2|] = 7 - Zl(z - 21) f(Z) = 75 Zl(z - 21) 2212 7 - 2l(Z - 21) m

_ lim  zelz  _ 2ief2l _ o2
Z = 21 (z+20) (2i+2i) 2
lim z
Now

z—> 00  (z2+4) -
By Jordan’s Lemma,

lim [ ze'? -0
R — 00 7CR (z2+4)

AsR — o,

[Fdz =2 feydx+ WM [z gy oo XD gy g

R — 00 7CRr (z2+4) - (x2+4)

o) xelx

Hence [__ D

dx = [ f(@)dz =2miy Res[fz = 2ni [-] = eai

. foo xcosx+ixsinx
o (x2+4)

Equating real and imaginary parts,

©  XCOSX _ ©  sinx _ 2
. iy dx = 0 and f—oo(x2+4) dx = €°n

dx =e*ni

Example 111.4

© cosmx

Evaluate [~ ———dx (m>0)
Solution
Consider the integral [, f(z)dz where f(z) = Zf+7+1

To find the poles of f(2):

Poles of f(z) = zeros of (z*+z°+1), these zeros are given by z*+z°+1=0
'+ 72 + 2+ 2120 22 (P +1) + P +1 =72

= (Z2+1)* -2 = 0= (2 +1-2)(Z° +1+2) = 0

=7°+1-z=00rz2+1+z2=0

14+V3i 1-V3i —1+vV3i —1-V3i
=>7z= 5 orz= 2 ,orz= 2 orz= 2

Poles of f (z) arc”fi , 1_;/3i, -14;\/31- , _1_2‘/3i (all are simple poles)

There are no poles on the real axis.

14+V/3i = a (say) and z = —1;\/31'

The poles lie inside the upper half of semi-circle is z =

= P(say)

By Cauchy’s residue theorem, | o f(2)dz =2mni} Res[f,z] where z, are the singularities(poles) of f(z).
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Now [.f(2)dz = f_RRf(x)dx + fcR f(z)dz (on the real line —-R to R (Lg) + the upper half of the semi-circle Cg).
To find the residue of f(z):

_lim _ _ lim _ eimz _ lim eimz
Resfho] = G- f@ = -0 e eraes 2z - a ePeraeh)
. . . im(1+v31)
elma elm(x elma ef

- (a-p)(a+a)(a+p) - (a-B)2a)(a+B) - (a=-B)2a)(a+B) - [1""/51' ‘1+‘/ﬁ](2(1+‘/ﬁ)[(1+‘/ﬁ) : (‘1+‘/ﬁ)}

2 2 2 2 2
im(1+v3i) im(1+v3Q) im —J3m
e 2 e 2 _ez2e 2

:(2(1+«/ﬁ))(2_\/ﬁ): 3i-3)  (V3i-3)
2 2

Similary,
im(-1+v3Q) im(-1+v31)
_ e 2 _ e 2
Res[f,p] = [(_1;\/3—1-) e (2(—1;\/3_i))[(1+;/3_i)+(—1-;\/3_i)] = (—1)(2(;1+x/3_i)) (2D
im(—1+V31) im(—1+v31Q) im —V/3m

ef _ ef _ e_T e 2
(_1)(2(—1;\/3_1‘))(27\/37) (V3i+3) (V3i+3)
Now lim ——)

7 — 00 (z%+z2%2+1) -
By Jordan’s Lemma,
llm eimz _
R — OOfCR (z%+2z2+1) dz =0
AsR — x,
) lim
[of@dz =[7 feodx+ "7 [

— 00 YCR (z%+2z2+1)

dz = [© 2 __dx +0

® (x*+x2+1)

imz

. im -V3m im —J/3m
o _ e'm¥ — A _H |2 e 2 e 2 e 2
Hence f_wmdx = fcf(Z)dZ = 21[12 ReS[f,Zk] 2mi I (V3i-3) + (V3i+3)

—\3m im im
e 2 {(3+\/§)67+(\/§—3)9_ T}

(V3i-3)(V3i+3)

=2mi

i [ e_\/;_m {(3+\/§)(cos(%)+isin(%))+(\/§—3)(cos(%)—isin(%)>} ]
(-3-9)

-12

= omi [e_ m {(3+\/ﬁ)(cos(%)+isin(%))+(\/§—3)(cos(%)—isin(%))}l

& LS

-12
—3m —/3m
_—4me” 2 (V3 COS(%) +35in(%) _me 2 (V3 cos(%) +3sin(%)
B 12 - 3
=Vsm m m
© cosmx+isinmx _me 2z (V3 COS(;) +3sin(7)
- (x*+x2+1) B 3

Equating real and imaginary parts,

foo cosmx _ ne#(ﬁcos(?) +3sin(%)

X =
o (x*+x2+1) 3
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sinmx _
and f wmdx =0
-V3m
me 2 (V3cos +3sin
Hencef cosmx - _f cosmx X - ( ) (2)
0 (x 4’+x2+1) OO(x4+x2+1) 6

Example 111.5

0 cosmx
Prove that [ D

dx = %(1 +ma)e™™* (m>0,a>0)
Solution

Consider the integral f f(z)dz where f(z) = W
To find the poles of f(2):

Poles of f(z) = zeros of (z*+a? )?, these zeros are given by (z>+a* )°>=0
= 72=-a° 2 z=(ai)’ = z=+ai = z = ai (twice)or z = -ai(twice)
Poles of f (z) are ai, -ai (both are order 2)

There are no poles on the real axis

kLT

ad

Lg

-adi

The only pole lie inside the upper half of semi-circle is z = ai (order 2)
By Cauchy’s residue theorem, | o f(2)dz =2mni} Res[f,z] where z are the singularities(poles) of f(z).

Now [, f(z)dz = f_RRf(x)dx + fCR f(2)dz (onthe real line —R to R (Lg)+ the upper half of the semi-circle Cg).
To find the residue of f(z2):

- lim 2 _ lim a N2 eimz
Res[f,ai] = 2 o aiiz L (z - ai) f(z) = 7o aidz (z — ai) @iy
lim _( — ai)? elmz _ lim a elmz _ lim  [(z+ad)?imei™?—ei™MZ2(z+ai)]
Tz ajdz (z+ai)?2(z—ai)? 7 — aidz(@z+ad? 7 > ai (z+ai)*
lim [(z+ai)imeimz—eim22] _ [(ai+ai)imeimai—eimai2] _ [-2ame~Mma_2¢-maj _ 2e "M% (ma+1)
Z — ai (z+ai)3 B (ai+ai)3 B (2ai)3 B -8a3i
_ e ™(ma+1)
- 4a3i
lim 1 _
Now 7 o o0 G - 0
. S lim eimz _
= by Jordan’s lemma , "/ OofCR v 42 =0
AsR — o0,
_ oo lim eimz _ oo elimx
J f@dz =[__ f(x)dx + R o OofCRm dz = f_wmd" +0
_ 0 elmx
- f_oo (x2+a2)2 dx
_ A A e M (ma+1) _ me"™%(ma+1)
Hence f o 2+a2)2 x = [.f(2)dz =2ni}. Res[f,z] = 2mi yre et e
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o cosmx+isinmx _ me ™A (ma+1)
f_oo (x2+a2)2 - 2a3

o cosmx sinmx _ me"™q(ma+1)
f_oo (x2+a2)2 Lf 0 (x2+q2)2 dx = 2a3

Equating real and imaginary parts,

foo cosmx _me ma(ma+1) and f sinmx dx =0
— (x2+a?)? © (x2+a?)?
foo cosmx f cosmx _ me ™% (ma+1)
0 (x2+a2)2 °<>(xz+az)2 4qa3

Note:111.1

z=re" = r=|z and 0= arg ()

logz = Log r+i arg(z)

If z = x+iy, r = (X*+y?)"?, 6= arg (z) = arg (x+y) = tan™(y/x)

Y2 + jarg(x) = log (x*+1)"% +0 = log (x*+1)"?

log(x+i) = log (x*+1)
Example 111.6

o 2
Prove that [ logﬁ%)dx = ntlog2

Solution
log(z+i)
z2+1

Consider the integral fcf(z)dz where f(z) =

To find the poles of f(2):

Poles of f(z) = zeros of (z°+1 ), these zeros are given by (z°+1)=0
> 72=-1=z=()V=2z=+i=z=iorz=-i

Poles of f (z) are i, -i (both are simple poles)

There are no poles on the real axis.

ELa

T

The only pole lie inside the upper half of semi-circle isz =i
By Cauchy’s residue theorem, | o f(2)dz =2mni} Res[f,z] where z, are the singularities(poles) of f(z).

Now [, f(z)dz = f_RRf(x)dx + fCR f(2)dz (onthe real line —R to R (Lg)+ the upper half of the semi-circle Cg).
To find the residue of f(z):

Res[f,i] :Zlim (z—10) f(2) = lim (z—1) log(z+i) _ lim'(z — D) log(z+i)

zZ-1 z2+1 Z -1 (z—i)(z+iQ)

1
; i i+i i log(22)2+itan~1( (o
- lim log(z+i) _ log(i+i) _ log2i _ g(22)2+i @ _ _ log2+itan" (o) (using Note I11.1)

750 (z+D) (i+1) 2i 2i 20
i
- log 2+—
2i
Now lim log(z+i) - lim tog(z+i) - lim 1 lim log(z+0)
Z = 00 z2%+1 Z — 00 (z+i)(z—i) Z > 00 (z-i) z > 00 (z+i)
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Consider lim _1 - =0
Z — oo (z-i)

lim log(z+i)
— 00 (z+i)

Consider . it is undetermined, so we have to use L’Hospital’s rule

. 1 .
lim = _ lim 1 _

Z—>00 1 Z — 00 z+i

i 1 +i
Hence !m lostzth g
Z > o0 z%+1

fm 08D cgo Mg LSED oo (ipg=R)

7z > 0 CR  z2+1 R - o z2+1
AsR — «,
_ (> lim log(z+i) _ oo log(x+i)
fcf(z)dz - f_oof(x)dx + R - OOfCR ZZ+1 dZ - f—oo x2+1 dx +O
L 1
_ o log(x2+1)2 _ oo Flog(x?+1) .
= [ — 5 dx= . o dx (By using the Note 111.1)

_lfoo log(x?+1) dx = foolog(x2+1) dx
-0 x241 0 x2+41

2
in
log 2+?

0 2
Hence ["2% "D ax = [ f(z)dz = 2xi¥. Res[f,z] = 2ni =

0 x2+1

2
=nlog2 +in7

0 2
Equating real part [ 280D

0 xzgy dx =mlog2

Case of poles are on the real axis.
Type IV
If the rational function f(z) = %, then degree of h(z) exceeds that of g(z) and g(z) #0.

Suppose h(z) has simple zeros on the real axis ( that is simple poles of f(z) on the real axis) , let it be a;,a, . ax
and h(z) has zeros inside the upper half of semi-circle ( that is poles of f(z) inside the upper half of semi-circle), let it be

Where C;,C,,....Cy are the semi circles and by,b,  bs are lie upper half of these semi circles.
Example 1V.1.

Evaluate [ ——dx

Solution.
Consider the integral fcf(z)dz where f(z) =

Z

z3-8

To find the poles of f(z):
Poles of f(z) = zeros of (z*- 8), these zeros are given by (z*- 8)=0
=222=8=22=02)°=2z2=2
Page | 49
Novelty Journals




- Novelty Journals

International Journal of Novel Research in Physics Chemistry & Mathematics

ISSN 2394-9651

Vol. 2, Issue 1, pp: (13-53), Month: January - April 2015, Available at: www.noveltyjournals.com

Since z-2 is a factor of 2*- 8, 7% 8 = (z-2)(z%+2z+4) = 0

—24V4-16 _ -24/-4+3 —2+21\/—
2 B 2

=7°427+4=0> 7= = -1+iV3

Poles of f (z) are 2 , -1+iV3 and -1-iV3 (all are 51mple poles)
Pole lie on the real axis z =2

Pole lie inside the upper half of semi-circle z = -1+i\3

—1-i~'3 @ —~fE on

To find the residue of f(z):

hm _ lim

Res[f2] = tim Lz-2) )= M z-

_ lim z _ 2 _ 2

T 7 5 2 E+H1-W3)(E+1+V3) | (2+1-iV3)(2+1+iV3)  (3-iV3)(3+iV3)
2 1

(9+3) 6

li

Res[f, -1+iV3] = L _1m+ W3- (14 ivV3)) f(2)

8 75 z(z —2) (z-2)(z+1-iV3) (z+1+iV3)

_ lim lim
o143 @1 iV3) 5= s 1413 @ H1 iV3)
lim z _ —1+iV3 _ —1+iV3

VA
(z—2)(z+1-iV3)(z+1+iV3)

=z—> —1 4 iV3 @-2)@+1+iV3)  (m1+iV3-2)(—~1+iV3+1+iV3)  (=3+iV3)(2iV3) C
_ —1+iV3 _ (—1+iV3)(1-iV3) :—(—1+i\/§)(—1+i\/§) - (1-3-2iV3) :(—2—21\/5):

To6(iV3+1)  —6(iV3+1)(1-iv3) -6(1+3) 24 24

We know that ffooo f(x)dx = mi) Res[f,ac] + 2mi). Res[f,bs] where a, ‘s are the poles lie on real axis and by ‘s are the poles

lie inside the upper half of semi-circle.

[, 2= dx = miY. Res[fa + 2mi¥, Res[fbs] = mi(2) + 2mi(“L2)
_ﬂ_i_n_t_m\/3i _V3m

6 6 6 - 6
Type V

If the rational function f(z) = g (Z)

Suppose h(z) has simple zeros on the real axis ( that is simple poles of f(z) on the real axis) , let it be aj,a, _ax

, then degree of h(z) exceeds that of g(z) and g(z) # 0.

and h(z) has zeros inside the upper half of semi-circle ( that is poles of f(z) inside the upper half of semi-circle), let it be

,,,,,

. A _ eing(z)
Let m be a positive real number and if f(z) = R then

J7 cosmx %dx =Re [ cosmx f(x)dx

= Re[2miY_, Reslf bi]] +Re [‘l‘[i27=1 Res[f,aj]]
And

J= sinmx M dx =Img [~ sinmx f(x)dx
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= Img[2niXi_; Res[f bi]] + Img [T[i Y5y Res[f, aj]]

Where by,b, b, are the poles of f(z) that lie in the upper half of the semi-circles

C1,C,,....Cy.
Example V.1.
o) COSX e 1 .
Prove that f—oo m X = o (— =2 - ZSlTll) and
5] sinx b4 1
Lo c-nern X T (=57 + cos1)
Solution.
. . _ eiz
Consider the integral [, f(z)dz where f(2) = P

To find the poles of f(z):

Poles of f(z) = zeros of (z-1)(z*+4), these zeros are given by (z-1)(z°+4) =0
=2z-1=00r2>+4=0=z=1o0r 2> =-4 = (2i)°

=>z=1lorz=2iorz="-2i

Polesof f(z) are z=1,z=2i,z="-2i (all are simple poles)

The only pole lie on the real axisisz=1

The only pole lie inside the semi-circle is z = 2i

—Zm

To find the residue of f(z):

Res[f,1] = Zli_r)nl(z —1) f(2) = lim ez _ lim  e*#

zZ > 1(Z -D (z-1)(22+4) 7 > 1 (22+4)
i i

et _e

= (1+4) 5

- _ lim Y _lim Y elz
Restf2il = Lo,z =20 f(A)= , 5, =20 e
lim eiz _ eizi e~2

= 7 5 20 (z-D(z+20)  (2i-1)(2i+2i) = (2i-1)(40)
We know that

[ cosmx 2l dx =
— h(x)

Re f_c:o cosmx f(x)dx = Re[ZTtiEf=1 Res|f, bi]] + Re [ni Zle Res|f, aj]]

Img fjooosinmx f(x)dx = Img[2mi¥i_, Res[f bi]] +Img [niZle Resf, aj]]

Where a,’s are the poles lie on the real axis and bg’s are the poles lie inside the upper half of the semi-circle.

foo cosx eX

© (x=1)(x2+4) dx=Re [__ cosx f(x)dx =Re [__ cosx

dx = Re[Zni Res|f, 2i]] + Re[ni Res|f, 1]]

(x—1)(x2+4)
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=Re [Zni (zi:)z(u)] * Re [ﬁi %l]

_ . ,cosl+isinl
—Re[ (2i- 1)(2)] Re[ i( 5 )]
_ e~2(2i+1) ] [mcosl nsml] [ e~2(2i+1) _ msinl _ [ e_2(2i+1)] _ msinl
= Re [T[ 2(2i-1)(2i+1) Re Re|m 2(—4-1) 5 =Rem —
_2 .

= [n_elo] - m;nl = —17T—0[e‘2 + 2sinl]

] sinx _ o . _ o ix
. ooen ¥ =1mg J_ sinx f(x)dx = Img [__ cosx pTye

= Img[2niXi_, Res[f bi]] + Img [1'[12?;1 Res|f, aj]]

=1Im [ e~2(2i+1) +Im [mcosl n'sml]
=Img|m 2(2i—1)(2i+1) g
2 -2 -2
- Img [T[ [3 (21+1)] " mcos1 - e “2 mcos1 S " meos1 _ E[_e_z + COSl]
-10 5 -5 5 5
Example V.2.
Prove that f;” ™™™ dx = >
Solution.

Consider the integral fcf(z)dz where f(z) = elzﬁ

To find the poles of f(z):

Poles of f(z) = zeros of (z), this zero is given by z =0
The only pole of f(z) is z = 0 simple and lie on real axis

Cr
To find the residue of f(z):
Res[f,0] = llm( —0) f) = lim e _g0-1

0 z

We know that [ cosmx &dx =

Re f_ww cosmx f(x)dx = Re[Zni Y31 Reslf, bi]] + Re [‘l‘[i Zﬁ?:l Res|f, aj]]
And [* Slnmxg( )dx =

Img fjooosinmx f(x)dx = Img[2mi¥i_, Resl[f bi]] +Img [niZle Resf, aj]]

Where a,’s are the poles lie on the real axis and bg’s are the poles lie inside the upper half of the semi-circle.

elm

a2 Sm;nx dx = Img [°_sinmx f(x)dx = Img [

=Img[2mi¥5_, Resl[f bi]] + Img [niZle Res[f,aj]]
= Img|niRes[f, 0]] = Img[mi (1)] ==

oo sinmx 1 oo sinmx
T dx =" Mgy =2

Hence [,

2vY—00
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5. CONCLUSION

In careful consideration and comparisons of various results in contour integration made an important development in
finding more concepts in engineering fields and | am still working on this to get more results in these areas. The extension
of the contour integral method is used for the electrical design of planar structures in digital systems and this method is
further developed for analysis of multi-media circuits and various engineering files.
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