
  ISSN 2394-9651 

International Journal of Novel Research in Physics Chemistry & Mathematics 
Vol. 2, Issue 1, pp: (13-53), Month: January - April 2015, Available at: www.noveltyjournals.com 

 

Page | 13 
Novelty Journals 

 

Complex Analysis for Engineering Mathematics 

to Calculate the Residue and Evaluation of Real 

Definite Integrals 

K. Santhanam 

M.Sc., M.Phil. 

Abstract: Complex Analysis is playing an important role in various engineering fields and in particular contour 

integration. In this paper, I started with some important basic concepts of Analytic function, Singularities, Zeros , 

Isolated Singularity, Removable Singularity, Pole, Essential Singularity, and Residue to evaluate the complex 

integration. 

Keywords: Analytic function, Singularities, Zeros, Isolated Singularity, Removable Singularity, Pole, Essential 

Singularity, Residue and Contour Integration. 

1.    INTRODUCTION 

Definition1. (Analytic function)  

A single valued function f (z) is said to be analytic in a region R of complex plane if f (z) has derivative at each point of R. 

If the function f (z) is said to be analytic at a point z = α then f (z) is analytic in the region which contain the point z = α as 

interior. Hence a function f (z) is analytic at a point z = α, then f (z) is analytic in some neighborhood DR(α) ={z: |z - α| <  

R} of α . 

Example1.1.Any polynomial function (real or complex) is analytic  

Example1.2.The exponential function is analytic  

Example1.3.The trigonometric functions are analytic  

Example1.4.The logarithmic functions are analytic  

Example1.5.The absolute function |z| is not analytic, because it is not differentiable at z = 0  

Singularities and Zeros  

Definition2. (Singularity) 

If a point z = α is called a singular point, or  singularity of the complex function f(z) if  f  is not analytic at z = α ,  but 

every neighborhood  DR(α) ={z: |z - α| <  R} of α  contains at least one point at which f(z) is analytic. 

Example2.1 

The function  ( )  
 

   
  is not analytic at z = 1, but is analytic for all other values of z.  Thus the point z = 1 is a singular 

point of f (z). 
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Example2.2 

The function    ( )  
 

 
   is not analytic at z = 0, but is analytic for all other values of z.  Thus the point z = 0 is a singular 

point of f (z). 

Example2.3 

Consider g (z) = log z , g (z) is analytic for all z except at the origin and at all points on the negative real-axis. Thus, the 

origin and each point on the negative real axis is a singularity of      g (z). 

Example2.4 

The function  ( )  
 

 (   )
 is not analytic at z = 0 and z = i, but is analytic for all other values of z.  Thus the point z = 

0 and z = i are the singular points of f (z). 

Definition3. (Isolated Singularity) 

The point α is called an isolated singularity of the complex function f(z) if  f  is not analytic at  z = α,  but there exists a 

real number  R > 0  such that f(z) is analytic everywhere in the punctured disk DR
*
(α) ={z: 0 < |z - α| <  R}. 

Example3.1 

The function   ( )  
 

   
   has an isolated singularity at z = 1. 

Example3.2 

The function  ( )  
 

 
   has an isolated singularity at z = 0. 

Example3.3 

Consider the function  ( )  
(   )

  (    )
    

                                              
(   )

  (   )(   )
  has three isolated singularities at z = 0, z = i and z = -i 

Example3.4 

The function  g(z) = log z,  however, the singularity at  z = 0  (or at any point of the negative real axis) that is not isolated, 

because any neighborhood of  contains points on the negative real axis, and  g(z) = log z  is not analytic at those 

points.  Functions with isolated singularities have a Laurent series because the punctured disk DR
*
(α) is the same as the 

annulus A (α, 0, R).  The logarithm function g (z) does not have a Laurent series at any point z = -a on the negative real-

axis.  We now look at this special case of Laurent's theorem in order to classify three types of isolated singularities. 

2.      REMOVABLE SINGULARITY, POLE OF ORDER K, ESSENTIAL SINGULARITY 

Let f (z) has an isolated singularity at α with Laurent series expansion 

 f (z) = ∑cn (z –α)
n
,    valid for z Є A (α, 0, R) and -∞ ≤ n ≤ ∞.    

Then we distinguish the following types of singularities at α.   

Definition4.  (Removable Singularities) 

If cn = 0 for n = -1, -2, -3…, then we say that f (z) has a removable singularity at α.  That is no negative powers terms in the 

Laurent series expansion of f (z).  

If f (z) has a removable singularity at z = α, then it has a Laurent series     ( )  ∑   (    )
  

      ,   valid for z Є A (α, 

0, R).        

The power series for f (z) defines an analytic function in the disk DR(α).   

If we use this series to define f (α) = c0, then the function f (z) becomes analytic at z = α, removing the singularity. 
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Example4.1 

Consider the function  ( )  
    

 
.  It is undefined at z = 0 and has an isolated singularity      at z = 0, as the Laurent series 

for f (z) is   

                                       ( )  
 

 
.  

  

  
 
  

  
 
  

  
  /  

                                                 
  

  
 
  

  
 
  

  
     

valid for |z| > 0.   

We can remove this singularity if we define f (0) = 1, for then f (z) will be analytic  

at z = 0 

Example4.2 

Consider   ( )  
      

  
 , which has an isolated singularity at the point z = 0, as the Laurent series for g (z) is    

                            ( )  
 

  
. 

  

  
 
  

  
 
  

  
  /  

                                     
 

  
 
  

  
 
  

  
     

valid for |z| > 0. 

We can remove this singularity if we define f (0) = - 1/2, then g (z) will be analytic  

for all z. 

Definition5. (Pole of order k) 

If k is a positive integer such that c-k ≠ 0 but cn = 0 for n = -k-1, -k-2, -k-3…, then we say that     f (z) has a pole of order k 

at α.  That is in the Laurent series expansion of f (z) there are only      (k terms) finite number of negative power terms.  

If f (z) has a pole of order k at z = α, the Laurent series for f (z) is 

 ( )  ∑   (    )
  

      ,    valid for z Є A (α, 0, R) ,where  c-k ≠ 0. 

Example5.1  

Consider the function     ( )  
    

  
          

 

                                                            
 

  
.  

  

  
 
  

  
 
  

  
  /  

                                                               
 

  
 

 

  
 
  

  
 
  

  
     

Here the function f (z) has a pole of order k = 2 at z = 0. 

Example5.2 

 Consider the function  ( )  
    

(   ) (   )(   )
  

Has a pole of order 3 at z = 2 and simple poles at z = -3 and z = 2.  

Definition5.1. (Simple Pole) 

If f (z) has a pole of order 1 at z = α, we say that f (z) has a simple pole at z = α. 

Example5.1.1  

Consider the function      ( )  
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.   

 

  
 
  

  
 
  

  
  / 

                                     
 

 
   

 

  
 
  

  
 
  

  
     

Clearly the function g (z) has a simple pole at z = 0. 

Definition6. (Essential Singularities) 

If cn  ≠ 0 for infinitely many negative integers n, then we say that f (z) has an essential singularity at  z = α.  That is in the 

Laurent series expansion of f (z), there are infinite number of negative power terms. 

Example6.1  

Consider the function f (z) = z
2 
sin (1/z)  

                                            4
 

 
  

.
 

 
/
 

  
 
.
 

 
/
 

  
  

.
 

 
/
 

  
  5  

                                            
 

  
    

 

  
    

 

  
        

  Here the function f (z) has an essential singularity at the origin.  Z = 0 

Example6.2  

Consider the function f (z) =  
 

  

                                               
 

 

  
 
.
 

 
/
 

  
 
.
 

 
/
 

  
     

                                               
 

  
    

 

  
    

 

  
        

Here the function f (z) has an essential singularity at the origin.  Z = 0 

Definition7.  (Zero of order k). 

A function f (z) analytic in  DR(α)  has a zero of order k at the point  z = α  if and only if        f
(n)

(α) = 0 for n = 0,1,2,..., k-

1, and f
(k)

(α) ≠ 0 (k
th

 derivative of f(z) ) 

Example7.1 

In the following function 

         f (z) = z sin z
2
   

                       
 

  
    

 

  
    

 

  
        

    We have   f
 ′ 
(z) = 2 z

2
 cos z

2
 + sin z

2  

                       f ′′ (z) = 6 z cos z
2
 – 4 z

3
 sin z

2 

                      f ′′′
 
(z) = 6 cos z

2 
 - 8 z

4
 cos z

2
 – 24 z

2
 sin z

2
       

       Then,  f (0) = f
 
′ (0) = f ′′ (0) = 0 , but f ′′′ (0)  = 6 ≠ 0. 

        Hence the function f (z) has a zero of order k = 3 at z = 0. 

Definition7.1.  (Simple Zero). 

If the function f (z) has a zero of order one, then we say that f (z) has a simple zero. 

Example7.1.1 

The function f (z) = z has a simple zero at z = 0  
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We have f ′ (z) = 1 , then f ′ (0) = 1 ≠ 0 , hence the function f (z) has zero of order one 

 Theorem I.  A function f (z) analytic in DR(α) has a zero of order k at the point z = α  iff its Taylor series given by   

 ( )  ∑   (   )
  

     has  c0 = c1 = 
…

 = ck-1 = 0   

and ck ≠ 0. 

Proof. 

Suppose f(z) is analytic and has a zero of order k at the point  z = α, then by Taylor‟s theorem  

  ( )  ∑   (    )
  

    Where cn = 
 ( )( )

  
 

Given f(z) has a zero of order k at z = α , hence we have c0 = c1 = 
...   

= ck-1 = 0 and ck ≠ 0 

Conversely suppose the Taylor series of f (z) has c0 = c1 = 
...   

= ck-1 = 0 and ck ≠ 0 which implies that from the definition of 

zero, f (z) has a zero of order k at z = α 

Theorem II.  Suppose f (z) is analytic in DR(α). Then f (z) has a zero of order k at the point z = α if and only if it can be 

expressed in the form    ( )  (    )  ( )  

where g (z) is analytic at z = α and g(α) ≠ 0. 

Proof. 

Suppose f (z) has a zero of order k at z = α, then by Theorem 1, f (z) can be written as  

f(z) = ck(z-α)
k
 + ck+1(z-α)

k+1 
 + 

….    

     
    = 

 
(z-α)

k
{ ck  + ck+1(z-α) +

 
 ck+2 (z-α)

2
 + 

… 
} 

       =   (z-α)
k
 g(z),  

Where g (z) = ck  + ck+1(z-α) +
 
 ck+2 (z-α)

2
 + 

… 
which is analytic at z = α and  g(α) ≠ 0 

Corollary II.1 

 If f(z) and g(z) are analytic at  z =α, and have zeros of orders  m  and  n,  respectively at z =α,  then their product h (z) = 

f(z)g(z)  has a zero of order  m + n at z =α. 

Proof. 

Suppose f(z) and g(z) are analytic at z = α and have zeros of orders m and n respectively at z = α 

Then by Theorem II, f (z) = (z-α)
m
 h1(z), and  g(z) = (z-α)

n
 h2(z), 

Where h1 (z) and h2 (z) are analytic at z = α, h1 (α) ≠ 0, h2 (α) ≠ 0  

Now h(z) = f(z)g(z) = (z-α)
m
 h1(z) (z-α)

n
 h2(z)  = (z-α)

m+n
 h1(z) h2(z)  = (z-α)

m+n
 h3(z) 

Where h3 (z) = h1 (z) h2 (z) analytic at z = α and h3 (α) ≠ 0 

Hence h (z) has a zero of order m+n at z = α 

Example II.1 Let f (z) = z³sinz. Then f (z) can be factored as the product of z³ and sinz, which have zeros of orders m = 3 

and n = 1, respectively, at z = 0.   

Hence z = 0 is a zero of order 4 of f (z). 

Let g (z) = z³ and h (z) = sinz and f (z) = g (z) h (z) 

Clearly g (z) and h (z) have zeros of orders m = 3 and n =1 respectively at z = 0 and hence by Corollary II.1, f (z) has zero 

of order m +n = 3 + 1 = 4 at z = 0 



  ISSN 2394-9651 

International Journal of Novel Research in Physics Chemistry & Mathematics 
Vol. 2, Issue 1, pp: (13-53), Month: January - April 2015, Available at: www.noveltyjournals.com 

 

Page | 18 
Novelty Journals 

 

Theorem III.  A function f (z) analytic in the punctured disk DR
*
(α) has a pole of order k at z = α if and only if it can be 

expressed in the form   ( )  
 ( )

(    ) 
  where the function h (z) is analytic at the point z = α and h (α) ≠ 0. 

Proof. 

If f (z) has a pole of order k at z = α, the Laurent series for f (z) is 

 ( )  ∑   (    )
  

      ,    valid for z Є A (α, 0, R), where c-k ≠ 0. 

f(z) =   ∑   (    )
  

     + ∑   (    )
   

       

            = ∑   (    )
  

      + c-1(z-α)
-1

 + c-2(z-α)
-2 

+ … + c-k(z-α)
-k

 

            = ∑   (    )
  

      +   (z-α)
-k

 (c-1(z-α)
k-1

 + c-2(z-α)
k-2 

+ … + c-k) 

            = (z-α)
-k

 {( ∑   (    )
  

     ) (z-α)
-k

 +   c-1(z-α)
k-1

 + c-2(z-α)
k-2 

+ … + c-k)} 

Let us take h (z) = {( ∑   (    )
  

     ) (z-α)
-k

 +   c-1(z-α)
k-1

 + c-2(z-α)
k-2 

+ … + c-k)} which is analytic at z = α and h(α) ≠ 

0 

Therefore f(z) = (z-α)
-k 

h(z) 

That is   ( )  
 ( )

(    ) 
   

Similarly the converse is also true  

The following Corollaries are useful in determining the order of a zero or a pole 

Corollary III.1.  If f (z) is analytic and has a zero of order k at the point z = α, then  ( )  
 

 ( )
    has a pole of order k at z 

= α.  

Proof. 

Suppose f (z) has a zero of order k at z = α, then by Theorem II,    ( )  (    )  ( )  

where g (z) is analytic at z = α and g(α) ≠ 0. 

                   Now        
 

 ( )
 

 

(   )  ( )
  

Let us take h (z) = 
 

 ( )
 , then 

 

 ( )
 

 ( )

(   ) 
  , clearly h (z) is analytic at z=α and h(z) ≠ 0 

By Theorem III, 
 

 ( )
 has a pole of order k at z = α 

Corollary III.2. If f (z) has a pole of order k at the point z = α, then  ( )  
 

 ( )
    has a zero of order k at z = α. 

Proof. 

If f (z) has a pole of order k at the point z = α, then by Theorem III,    ( )  
 ( )

(    ) 
   

Where h (z) is analytic at z = α and h (α) ≠ 0. 

                   Now        
 

 ( )
 
(   ) 

 ( )
  

Let us take G (z) = 
 

 ( )
 , then 

 

 ( )
 (   )  ( ), where G(z) is analytic at z = α and G(α) ≠ 0 

By Theorem II, 
 

 ( )
  ( ) has a zero of order k at z = α, where g (z) = (   )  ( ) 

Corollary III.3.  If f(z) and g(z) have poles of orders  m  and  n,  respectively at the point  z = α, then their product  h(z) = 

f(z)g(z)  has a pole of order  m +n at z = α. 
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Proof. 

Suppose f(z) and g(z) have poles of orders  m  and  n,  respectively at the point  z = α, then by Theorem III,   ( )  
  ( )

(    ) 
  

and    ( )  
  ( )

(    ) 
 

Now h(z) = f(z)g(z)   = 
  ( )

(    ) 
  
  ( )

(    ) 
    =  

 ( )

(    )   
 , where H(z) =   ( )h2(z) which is analytic at z = α and H(α) ≠ 0. 

Hence by Theorem III, h(z) has a pole of order m + n at z = α 

Corollary III.4.  Let f (z) and g (z) be analytic with zeros of orders m and n, respectively at          z = α.  Then their 

quotient    ( )  
 ( )

 ( )
    has the following behavior: 

(i)  If  m > n,  then h(z) has a zero of order  m - n at z  = α. 

 (ii)  If  m < n ,  then h(z) has a pole of order n -  m at z  = α. 

 (iii)  If m = n,  then h(z) has a removable singularity  at z = α,  and can be defined so that h(z) is analytic at z = 

α,  by     ( )  
   
   

 ( ). 

Example III.1.  Locate the zeros and poles of  ( )  
    

 
  , and determine their order. 

Given  ( )  
    

 
   = 

    

     
    = 

 ( )

 ( )
    

We know that the zeros of f (z) = sinz occur at the points z = nπ, where n is an integer.  Because f ′ (nπ) = cosnπ ≠ 0, the 

zeros of f (z) are simple.  Similarly, the function          g (z) = zcosz   has simple zeros at the points z = 0 and z  

.  
 

 
/    where n is an integer.  From the information given, we find that h( )  

 ( )

 ( )
     behaves as follows: 

i.    h (z) has simple zeros at z = nπ, where n = ±1, ±2… 

ii.   h (z)  has simple poles at  z   .  
 

 
/ ,  where n is an integer;  and 

iii.  h (z)  is analytic at z = 0 if we define     ( )  
   
   

 ( )   . 

Example.III.2. Locate the poles of  ( )  
 

          
and specify their order. 

The roots of the quadratic equation 5z² + 26z + 5 = 0 are z = - 5 and z   
 

 
.   

If we replace z with z² in this equation, the function   ( )               has roots z
2
 = - 5 and z

2
   

 

 
    

Therefore the roots of f (z) are z = ±i√5 and    z = ± 
 

√ 
 .   

 That is f (z) has simple zeros at the points z = ±i√5 and    z = ± 
 

√ 
 .   

Corollary 3.1 implies that g(z)  has simple poles at z = ±i√5 and    z = ± 
 

√ 
 . 

Example III.3.  Locate the zeros and poles of  g( )  
      

  
, and determine their order. 

The function  f (z) = z² sinπz  has a zero of order   k = 3 at  z = 0  and simple zeros at the points  z  = ±1, ±2,…,  Corollary 

implies that g(z) has a pole of order 3 at the point z = 0  and simple poles at the points z  = ±1, ±2,…,     

Example III.4. Find the poles of f( )  
 

         
 

 Here the poles of f(z) are the zeros of sinz – cosz  

Take sinz – cosz = 0   =>  sinz = cosz 
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=>    
    

    
    =>  tanz = 1  =>   z = nπ + 

 

 
 , n = 0,1,2…. 

Hence the simple zeros of sinz – cosz are z = nπ + 
 

 
 , n = 0,1,2…. 

Therefore the simple poles of f (z) are   z = nπ + 
 

 
 , n = 0,1,2…. 

3.       RESIDUE THEORY 

Definition.1. (Residue).  Let f (z) has a non-removable isolated singularity at the point z0.  Then f(z) has the Laurent series 

representation for all z in some  punctured disk DR
*
(  ) given by   ( )  ∑   (    )

   
     

The coefficient  a-1  of 
 

    
   is called the residue of f(z) at  z0 .  

It is denoted by  Res[f,z0] = a-1   

 Example .1.1.  

Consider f (z) = e
2/z 

 Then the Laurent series of f about the point z0 = 0is given by    

   
 

   
  

  

    
  

  

    
     

The co-efficient of  
 

    
   = 

 

    
    =  

 

   
 is 2 

Hence by definition of residue, residue of f (z) = e
2/z 

at z0 = 0 is given by Res [f, z0] = 2   

 Example .1.2.  Find residue of f (z) =  
 

        
   at   z0 = 0 

f(z) =   
 

 (      )
  =  

 

 (   )(   )
 

 Now  
 

 (   )(   )
= 
 

 
  +

 

   
 + 

 

   
 

⇒A(z+1)(2-z) + Bz(2-z) + Cz (z+1) = 3 

⇒A(-z
2
 +2 + z) +B(2z –z

2
) +C(z

2
 +z) = 3 

⇒-A –B +C = 0---- (a) 

A +2B +C = 0 ---- (b) 

2A =3 ----  ( c) ⇒A = 3/2 

(a) ⇒-B + C = A= 3/2 

(b) ⇒2B + C = -A = -3/2 

----------------------------- 

Adding   B + 2C =0⇒ B = - 2C 

Put B = - 2C  in -B + C = 3/2 

⇒3C = 3/2⇒C= 1/2 

Put C= 1/2, B = -2C = -1⇒ B = -1 

Hence f(z) = =    
 

 
  +

 

   
 + 

 

   
   = 

 

  
  - 

 

   
 + 

 

 (   )
 

                = 
 

  
   - (1+z) 

-1
 + 

 

 
 (2-z)

-1 
 =  

 

  
   - (1- z+ z

2 
-….) +

 

 
 2

-1.   
 

 
/
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               = 
 

  
   - (1- z+ z

2 
-….) +

 

 
  (1 + 

 

 
   + .

 

 
/
 

  + ….)  

               =  
 

  
   - 

 

 
  +

  

 
- ….. 

The residue of f at 0 is given by Res [f,0] = coefficient of    
 

 
   = 

 

 
 

Example 1.3. Find residue of f (z) =  
  

  
   at   z0 = 0 

Laurent expansion of f(z) =   
 

  
*    

  

  
 
  

  
 +   

 

                                              =  
 

  
 

 

  
 

 

   
 

 

  
  

The residue of f at 0 is given by Res [f,0] = coefficient of    
 

 
   = 

 

 
 

Contour integration 

Contour integration is the process of calculating the values of a contour integral around a given  

contour in the complex plane.  

The Cauchy integral formulae are useful in evaluating contour integrals over a simple closed  

contour C where the integrand has the form 
 ( )

(    )
    and f is an analytic function  

Example 1. 

Evaluate ∫     
 

 
along the curve C : x = t-1, y = e

t-1
, 2< t < 3 

Solution. 

Let z = x+iy ⇒ dz = dx + i dy 

Given curve x = t-1 ⇒ dx = dt 

And y = e
t-1 ⇒ dy = e

t-1
dt 

∫     
 

 
 = ∫     (      )

 

 
 = ∫     (          )

 

 
 = ∫        

 

 
 + ∫    (   )  

 

 
 

=      -
 
 

 

 

  
      

 
1
 
 

 

 

   = e
2
 – e + 

      

 
 =  

Example 2. 

If C is the curve y = x
3
-3x

2
+4x-1 joining the points (1,1) and (2,3) then  

 find the value of  ∫ (        )   
 

 
 

∫ (        )   
 

 
 =  ∫ (        )  

    

   
  = 

    

 
  - 

    

 
1
    
   

         

= 4(2+3i)
3
 – 2i(2+3i)

2
  - 4(1+i)

3
 + 2i(1+i)

2
   = -156 +38i 

Recall (i).(Cauchy’s integral Theorem) 

Let D be any simply connected domain. Let C be any closed contour contained in D and f(z)  

analytic in D, then  ∮  ( )   
 

 
 = 0                                        
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Recall (ii). 

For a function f(z) analytic in DR
*
(  )and for any r with 0 < r < R, the Laurent series  

coefficients of f(z) are given by   

   
 

   
∮

 ( )

(    )
     

 

 
for  n =0,±1 ,±2,   …..  ------(I) 

 WhereC denotes the circle {z: |z-z0| = r} with positive orientation.   

 Put n = -1  in Equation (I) and replace C with any positively oriented simple closed contour C 

containingz0, provided z0 is the still only singularity of f(z) that lies inside C,  

Then we obtain    a-1 =   
 

   
∮  ( )   
 

 
.   

We know that a-1 is the Res[f,z0]⇒ Res[f,z0] =   
 

   
∮  ( )   
 

 
 

⇒∮  ( )   
 

 
  = 2πi Res[f,z0] 

If we know the Laurent series expansion for f(z), then using above equation we can evaluate contour integrals.   

 Example: ii.1.  Evaluate   ∮  
 

    
 

 
where C denotes the circle C = {z: |z| =1}with positive orientation.   

 

Solution.  

Let f(z) =  
 

  

From Example.1, we have Res [f, 0] = 2  

Recall 2. gives us ∮  ( )   
 

 
  = 2πi Res[f,z0] 

Hence  ∮  
 

    
 

 
 = 2πi Res[f,0]   = 2πi (2) = 4πi  

Theorem 1 (Cauchy's Residue Theorem).  

 Let D be a simply connected domain, and let C ⊂D be a  closed positively oriented contour within and on the functionf(z) 

is analytic,  except finite number of singular z1,z2,….,zn  , then   

∮  ( )   
 

 
   =  2πi∑    ,    -
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Proof. 

Let Ci be the neighborhood of zi, (i=1,2…n) lies inside C such that all Ciare disjoint. 

Since each zi is a singular point of f and each Ci is a neighborhood of  corresponding zi(i=1,2,..n), f is analytic in and on C 

except these neighborhoods Ci (i=1,2…n). 

Then by Cauchy‟s Theorem,(Recall 1) 

∮  ( )   
 

 
   - ∮  ( )   

 

  
   - …… - ∮  ( )   

 

  
   = 0 

⇒∮  ( )   
 

 
    = ∮  ( )   

 

  
   + …… + ∮  ( )   

 

  
 

 ⇒∮  ( )   
 

 
    = 2πiRes[f,z1] +….. + 2πi Res [f,zn] ( by Recall 2) 

⇒ ∮  ( )   
 

 
    =    ∑    ,    -

 

   
 

Note 1.1: The residue at z0depend only the coefficient a-1in the Laurent expansion, if f(z) has a  

removable singularity at z0, then the Laurent expansion has no negative power term and 

hencea-1=0 ⇒ Res[f,z0] = 0.  

Theorem 2.(Residues at Poles). 

 (i)      If f(z) has a simple pole at z0,  then Res[f,z0] = 
   
     

(    )
  ( )   

 (ii)     If f(z) has a pole of order 2 at  z0,  then Res[f,z0] = 
   
     

 

  
((    )

 
 
 ( ))  

(iii)     If f(z) has a pole of order 3 at  z0,   then  Res[f,z0] = 
 

  

   
     

  

   
((    )

 
 

 ( ))  

(v)     If f(z) has a pole of order k at  z0,      

then Res[f,z0] = 
 

(   ) 

   
     

    

     
((    )

 
 

 ( ))  

Proof. 

i) Suppose f(z) has a simple pole at z =  z0,   then the Laurent series expansion   

f(z) = ∑   (    )
   

       (    )
   

⇒ (z -z0)f(z) = (z-z0) ∑   (    )
   

   + a-1 

⇒  (z -z0)f(z) = (z-z0) ∑   (    )
   

    + Res [f,z0] 

Taking lim z→z0,   both sides  

    
     

(    ) ( )
 
  =   

   
     

 (z-z0) ∑   (    )
   

    +
   

     
Res[f,z0] 

=  0 + Res[f,z0] 

Hence Res[f,z0] =     
     

(    ) ( )
 
 

v) Suppose f(z) has a pole of order k at z =  z0,   then the Laurent series expansion   

f(z) = ∑   (    )
   

       (    )
  +    (    )

   + …… +    (    )
   

Multiply both sides by (z-z0)
k
 

(z-z0)
k
f(z) =      + ….. +    (    )

    + ∑   (    )
 (    )
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Differentiate both sides k-1 times with respect to z,  

    

     
(    )

  ( )  = 0+0+…..+    (   )  +  
    

     
(∑   (    )

 (    )
  ) 

 

   
 

                                  =     (   )  +   (    )   +     (    )
 .

(   ) 

  
/ +  ….  

Taking lim z→z0,   both sides  

   
     

    

     
(    )

  ( )  = 
   
     

   (   )  + 0 +…  

  =     (   )   = Res [f,z0] (k-1)! 

Hence  Res [f,z0]  =  
 

(   ) 

   
     

    

     
(    )

  ( )  

ii)  and iii) are the particular case of v) (take k = 2 and k= 3) 

Example 2.1.  

Find residue of f (z) =  
  

    
   at   z0 = 1 

Solution. 

Given f (z) =  
  

    
  = 

  

(    )(   )
   

The poles of f(z) are z = 1 , z =-1 (simple poles) 

Res [f,1] = 
   
    

(   )  ( )  =  
   
    

(   )   

(   )(   )
    = 

   
    

    

(   )
   = 

 

 
   

Example 2.2 .  

Find the residue of f(z) = (z
8
- ω

8
)

-1
, where ω is any complex constant. 

Solution.  

Given f(z) = (z
8
- ω

8
)

-1 
 = 

 

(     )
   

The poles of f(z) are the zeros of  z
8
-ω

8
 ⇒  zeros are given by  z

8
-ω

8 
= 0 

⇒ z
8 
= ω

8 
 ⇒ z

8
 = ω

8
(cos2nπ +isin2nπ), n = 0,1,2,…7 ⇒ z

8
 = ω

8
 e

2niπ
  

 ⇒ z = ω e
2nπi/8 

 ⇒  z = ω e
nπi/4 

 , n = 0,1,2,…7  

Hence z = ω e
nπi/4

 , n = 0,1,2,…7 are the simple poles of f(z) 

Let an = ω e
nπi/4

, n = 0,1,2,…7 

The residue of f (z) at  z = an ,  is given by Res [f, an] = 
   

     
(    )

  ( )  

                     =
   

     
(    )

  

(     
 )

   

Since it is not easy to factories (z
8
- an

8
) into eight factors , so we have to use L‟Hospital‟s rule 

(that is differentiating Nr and Dr separately w.r.to z) 

                     = 
   

     

 

   
   =  

 

   
  , n = 0,1,….7. 
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Example 2.3  

Find the residue of  
 

      
 

Solution.  

Given f(z) =  
 

      
 

The poles of f(z) are the zeros of sinhπz,  

Also the zeros of sinhπz are z = ni, for all integer n (since sinhnπi = 0 for all n) 

Hence Res [f,ni] = 
   
     

(    ) 
 

      
   

By using L‟Hospital‟s rule 

Res [f,ni] = 
   
     

  
 

       
   = 

 

        
  = 

 

      
  (Since coshix= cosx) 

                 = (-1)
n
/π  (Since  

Example 2.3.  Find the residue of  f(z) = 
    (  )

  
  at z0 = 0 

Solution.   

Given  f(z) = 
    (  )

  
    =   

    (  )

      (  )
 

Since z
2 
 has a zero of order 2 at z0 = 0 and sin(πz) has a simple zero 1 at  z0 = 0, we have  

z
2
sin(πz) has a zero of order 3at  z0 = 0   and  πcos(πz) ≠ 0. 

Hence f(z) has a pole of order 3 at z0 = 0 .  

 By part (iii) of Theorem .2, we have   

Res [f,0] =  
 

  

   
     

  

   
((   ) 

 

 ( ))  

              =   
 

  

   
     

  

   
(  

 
    (  )

  
  )  

                =   
 

  

   
     

  

   
(  

 

     (  ))   =   
 

  

   
     

  

   
( 
 
    (  )        (  )  )  

              =      
 

  

   
     

  

   
( 
 
    (  )         (  ) )  

              =
 

  

   
     

(        (  )         (  )          (  )    (  )    (  ) )  

                =     
 

  

   
     

(          (  )            (  )    (  ))  

                =     
   

  

   
     

    (  ) (               (  ))  

  =      
   
     

 

    (  )
(           

   (  )

   (  )
)      

Res [f,0]        =      
   
     

(     (  )    (  ))

    (  )
 

As  lim z → 0, LHS is indeterminate, so we have to use L‟Hospital‟s rule to evaluate the limit 
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(that is differentiating Nr and Dr separately w.r.to z) 

Res [f,0]    =      
   
     

(    (  )       (  )       (  ))

     (  )    (  ) 
 

                  =      
   
     

        (  )

      (  )    (  ) 
 

                  =    
   
     

     

     (  )    (  )
 

=  
  

 

   
     

      

    (  )    (  )
   =    

   

 

   
     

.
    

    (  )
/
   
    

.
 

   (  )
/ 

                 =  
   

 
  

 

   
    

.
   (  )

   
/

   
    

.
 

   (  )
/ =      

   

 
 ( )( ) = 

   

 
 

 Example 2.4.   

Find  ∫
  

         

 

 
  where C denotes the circle {z: |z| =3} with positive orientation.   

 

Solution.  

Let f(z) =     
 

          
     =   

 

  (        )
   =  

 

  (    )(     )
 

The singularities of f(z) that lie inside C are simple poles at the points z =1 and z= -2, and a pole of order 2 at z =0.  

To find the Residue at z = 0 :  

 Res [f,0] =
   
     

 

  
((    )

 
 
 ( ))   = 

   
    

 

  
 ( 

  
 

  (   )(   )
  )       

                    = 
   
    

 

  
 ( 

 

(   )(   )
  )      =  

   
    

 

  
 ( 

 

      
  )       

                   = 
   
     

     

(      ) 
 = - 

 

  
 

To find the Residue at z = 1 :  

Res [f,1]      = 
   
    

(    )
  ( )  = 

   
    

(    )
  

  (    )(     )
   

                       = 
   
    

 

  (    )
=   

 

 

 
 

To find the Residue at z = -2 :  

Res [f,-2]      = 
   

     
(   )  ( )   =  

   
     

(   ) 
 

  (    )(     )
 

            = 
   

     

 

  
 
(     )

 =   
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  By Cauchy‟s residue theorem ∮  ( )   
 

 
    =    ∑    ,    -

 

   
 

∫
  

         

 

 
   = 2πi(Res[f,0] +Res[f,1]+Res[f,-2]) = 2πi(

  

 
 
 

 
 

 

  
) = 0 

 Example 2.5.  Find  ∫
  

    

 

 
   where C denotes the circle {z: |z-1| =2 } with positive orientation 

 

Solution.   

Let  f(z) =     
 

    
 

To find the poles of  f(z) , we know that poles of f(z) is nothing but the zeros of z
4
 +4  

Now we have to find the zeros of  z
4
 +4   

Put  z
4
 +4   =0 ⇒z

4
 = -4 = 4i

2  
= (2i)

2⇒ z
2
 = ±2i 

Let z = a+ib ⇒ z
2
 = (a+ib)

2
 = a

2
 + 2iab – b

2  

Supposez
2
= 2i ⇒a

2
–b

2
+ 2iab = 2i ⇒ a

2
 –b

2
=0 and ab = 1  

⇒  a
2
 =  b

2
and b = 1/a 

⇒ a = ±b and  b = 1/a 

If a = b , then b = 1 ⇒ a,b=1 

If a = -b , then b = -1⇒a = 1 , b = -1 

The zeros are z = a+ib , 1+i, 1-i 

Suppose  z
2
= -2i ⇒a

2
 –b

2
+ 2iab = -2i ⇒ a

2
 –b

2 
=0 and ab = -1  

⇒  a
2
 =  b

2     
and b = -1/a 

⇒ a = ±b and  b = -1/a 

If a = b , then b = -1 ⇒ a,b=-1 

If a = -b , then b = 1⇒a = -1 , b =1 

The zeros are z = a+ib ,-1-i, -1+i 

Hence the poles of f(z) are 1±i, -1±i (simple poles) 

The poles lie inside the circle {z: |z-1| =2} with positive orientation are 1±i 

Res[f,1+i] =  
   

      
(  (   ) )

  ( )  =
   

      
(  (   ) )

 (
 

    
)                    

As  lim z →1+i, LHS is indeterminate, so we have to use L‟Hospital‟s rule to evaluate the limit 

(that is differentiating Nr and Dr separately w.r.to z) 

          =    
   

        
(
 

   
)       =

   
      

  (
 

   
)        = 

   

 (   ) 
 =  

   

 (  ) 
 = 
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Similarly 

Res[f,1-i] = 
   

    
 

By Cauchy‟s residue theorem ∮  ( )   
 

 
    =    ∑    ,    -

 

   
 

∫
  

    

 

 
   = 2πi(Res[f,1+i] +Res[f,1-i]) = 2πi(

   

   
 
   

   
) = - 

  

 
 

Result 3.  

Let P(z) be a polynomial of degree at most 2.  If a ,b and c are distinct complex numbers, then   

f(z) = 
 ( )

(   )(   )(   )
  =  

 

(   )
 + 

 

(   )
 + 

 

(   )
 

Where A = Res [f,a] = 
 ( )

(   )(   )
 

            B = Res [f,b] = 
 ( )

(   )(   )
 

              C = Res [f,c] = 
 ( )

(   )(   )
 

Example 3.1.   

Find the residue of   f(z) = 
    

 (   )(   )
 and express f(z) in partial fractions.   

Solution.   

In Result I,  take a= 0, b = 1, c= 2 and P(z) = 3z+2. 

The residues are  

A = Res[f,0] =   
 ( )

(   )(   )
 = 1 

B = Res [f,1] =
 ( )

(   )(   )
 = -5 

C = Res [f,2] = 
 ( )

(   )(   )
  = 4 

The partial fraction expression of f(z)is given by   

f(z)  =  
 

(   )
 + 

 

(   )
 + 

 

(   )
 

       =  
 

(   )
 + 

  

(   )
 + 

 

(   )
 

       =  
 

 
 - 

 

(   )
 + 

 

(   )
 

Example 3.2.  Find the residue of f (z) = 
 

    
  and express in partial fractions.   

  f (z) = 
 

    
  =  

 

(    )(    )
   = 

 

(   )(   )(   )(   )
   = 

 

    
  + 

 

    
  + 

 

    
  + 

 

    
   

 Where  A = Res[f,1] = 
   
   

(   )  ( )        = 
   
   

(   ) 
 

(   )(   )(   )(   )
          

      =  
 

 (   )(   )
 = 

 

 (  (  ))
  = 

 

 
 

B= Res[f,-1] =  
   

    
(   )  ( )        = 

   
    

(   ) 
 

(   )(   )(   )(   )
          

      =  
 

  (    )(    )
 = 

 

 (    ))
  =  
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C= Res [f,i] = 
   
   

(   )  ( )        = 
   
   

(   ) 
 

(   )(   )(   )(   )
          

      =  
 

  (   )(   )
 = 

 

  (    )
  =  

 

  
 

D=Res[f,-i] = = 
   

    
(   )  ( )        = 

   
    

(   ) 
 

(   )(   )(   )(   )
          

      =  
 

   (    )(    )
 = 

 

  (  (  ))
  = 

 

  
 

                        f(z) = 
 

    
  + 

 

    
  + 

 

    
  + 

 

    
    =   

 

 (    )
  - 

 

 (    )
  - 

 

  (    )
  + 

 

  (    )
    

 Result 4.   

If a repeated root occurs in partial fraction, and P(z) has degree of at most 2, then f(z) = 
 ( )

(   ) (   )
  =  

 

(   ) 
 + 

 

(   )
 + 

 

(   )
 

Where    A = Res [(z-a)f(z),a] 

B = Res [f, a] 

C = Res [f, b] 

Example 4.1. Find the residue of f(z) = 
       

  (   )
   and express in partial fraction. 

Solution.   

In Result II, take a = 0, b = 1  and P(z) =          ,  we have   

f(z) = 
 ( )

(   ) (   )
   = 

 

(   ) 
 + 

 

(   )
 + 

 

(   )
 

Where    A = Res [(z-0)f(z),0] =  Res [ z 
       

  (   )
  ,0] = Res [

       

  (   )
,0] 

                 =  
   
     

(   )(
       

 (   ) 
)  =  

   
     

(
       

(   ) 
)    = -2 

B = Res [f, 0]  =  
   
    

 

  
  (   )

  
      

  (   )
=  

   
    

 

  
   

  
      

  (   )
  =

   
    

 

  
  
       

(   )
 

       = 
   
     

[(    )(   )  ( )(       )]

(   ) 
     

 
 = 

   
     

[(       )]

(   ) 
     

 
= -5 

C = Res [f, 1] = Res [
       

  (   )
,1] = 

   
     

(   )(
       

  (   ) 
) 

            = 
   
     

(
       

  
 ) = 6 

            

f(z) =  
  

(   ) 
 + 

  

(   )
 + 

 

(   )
 =  

  

  
 + 

  

 
 + 

 

(   )
  

 Example 4.2. Find the residue of f(z) =  
 

(   ) (   )
 

 Take P(z) = 1, a= 1, b=3 

 f(z) =  
 ( )

(   ) (   )
 =   

 

(   ) 
 +  

 

(   ) 
 +   

 

(   )
 

A = Res [(z-1)f(z),1] =  Res [ (z-1) 
 

(   ) (   )
  - =  

   
     

(   )(
 

(   )(   ) 
)   

             =   
 

(   )
  = 
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B = Res [f,1] = 
   
    

 

  
  (   )

  

(   ) (   )
 = 

   
    

 
  ( )

(   ) 
 =  

  

 
 

 C = Res [f,3] =  
   
     

(   )(
 

(   ) (   ) 
)   = 

   
     

 

(   ) 
    = 

 

 
 

4.      EVALUATION OF REAL DEFINITE INTEGRALS 

Cases of poles are not on the real axis. 

Type I  

Evaluation of the integral ∫  (        )  
  

 
 where f(cosθ sinθ) is a real rational function of sinθ,cosθ. 

First we use the transformation z = e
iθ 

 =  cosθ + i sinθ ------ ( a) 

And 
 

 
 = 

 

   
 = e-

iθ
 =  =  cosθ - i sinθ -------- (b) 

From (a) and (b) , we have  cosθ = 
 

 
(  

 

 
) , sinθ = 

 

  
(  

 

 
) 

Now  z = e
iθ 

 ⇒ dz = ie
iθ
dθ ⇒ dθ = 

  

  
 

Hence ∫  (        )  
  

 
 = ∫  ,

 

 

 

 
.  

 

 
/  

 

  
(  

 

 
)-
  

  
 

 Where C, is the positively oriented unit circle |z| = 1 

The LHS integral can be evaluated by the residue theorem and  

 ∫  ,
 

 

 

 
.  

 

 
/  

 

  
(  

 

 
)-
  

  
 = 2πi ∑ Res(zi) , where zi is any pole in the interior of the  

circle |z| =1 

 Example I.1. 

Evaluate ∫          (       )                                  
  

 
 

 Solution. 

Let I  = ∫       ,   (       )      (       )-   
  

 
 

          = ∫           (       )  
  

 
 = ∫                 (  )  

  

 
 

   = ∫   (          )    (  )  
  

 
 =  ∫    

  
    (  )  

  

 
 

Let z = e
iθ
, dz = ie

iθ
 dθ ⇒ dθ = 

  

    
 = 

  

  
  and C denotes the unit circle |z| = 1 

Therefore I  =  ∫
   

 

  
.
  

  
/ 

 

 
 =  

 

 
∫
   

 
  

    
 

 

 
 =  ∫  ( )   

 

 
 where f(z) = 

   
 

     
 

 By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z) 

 To find the poles of f(z) : 

Since poles of f(z) = to the zeros of iz
n+1

 ,and the only zero of iz
n+1

 is z = 0 of order n+1 

Hence the pole of f(z) is z =0 of order n+1 

There are no poles on the real axis 

To find the residue of f(z):  

Res [f,0] = 
 

  
  
   
    

  

   
(    )

    ( )  =
 

  
  
   
    

  

   
(    )

      
 

      
 

= 
 

  
  
   
    

  

   
    

   
 

      
  =  

 

  
  
   
    

  

   

   
 

    
   = 

 

  
  
   
    

(  ) 
   

 

    
 

 = 
(  ) 

   
   

Hence ∑ Res[f,zk] = Res[f,0]= 
(  ) 
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 Therefore  ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] = 2πi 

(  ) 

   
   = 2π 

(  ) 

  
    

 ⇒ I = 2π 
(  ) 

  
    

 ⇒ ∫       ,   (       )      (       )-   
  

 
 = 2π 

(  ) 

  
    

⇒ ∫          (       )   
  

 
 – i∫           (       )-   

  

 
 = 2π 

(  ) 

  
    

 Equating real and imaginary parts, 

 ∫          (       )   
  

 
 = 2π 

(  ) 

  
    

 And ∫           (       )-   
  

 
 = 0 

 Example I.2. 

Prove that ∫
  

       

  

 
  =  

  

√     
   , a >b >0. 

  Solution. 

Let I = ∫
  

       

  

 
   

 Put z = e
iθ
  ⇒ dθ =  

  

  
  and let C denotes the unit circle |z| = 1 

Since z = e
iθ
  = cosθ + isinθ and 

 

 
  = cosθ – isinθ, we have cosθ = 

 

 
  (z + 

 

 
)   

I = ∫
  

       

  

 
   =  

 

 
∫

  

 4  
 

 
.  

 

 
/5

  
 

 
 =  

 

 
∫

  

   
   

 
 
 

 

  
 

 
 =  

 

  
∫

  

 
  

 
     

  
 

 
 

 =  ∫  ( )   
 

 
 where f(z) = 

 

  (   
   

 
  )

 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

To find the poles of f(z): 

Poles of f(z) = to the zeros of bi(z
2
+
   

 
 +1) and the zeros are given by  bi(z

2
+
   

 
 +1) = 0 

 ⇒ (z
2
+
   

 
 +1) =0 -------- (a) 

 ⇒ z  =  
 
  

 
  √

   

  
  

 
      =  

 
  

 
  √

       

  

 
      = 

 
  

 
   √     

  
      = 

    √     

 
       

⇒ z = 
   √     

 
      or 

   √     

 
     are the simple poles of f(z)  

Let α =   
   √     

 
      and β =  

   √     

 
   , these the roots of the equation (a) 

Now the product of the roots αβ = 
 

 
 = 1  

Now | αβ| = 1 ⇒ |α||β| = 1 

Since a > b > 0, |β| = |
   √     

 
|   = |

  √     

 
|    

Here  a > b ⇒ a
2
 > b

2
 ⇒ a

2
- b

2
>0⇒ √        > 0 ⇒ a + √        > a >b  

⇒ a + √       >b ⇒ 
  √     

 
   > 1 ⇒ |

  √     

 
| > 1 

Hence  z = α =   
   √     

 
  < 1 is the only simple pole lie inside the circle |z| = 1 

There are no poles on the real axis 

To find the residue of f(z): 
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Res [f,α]  =  
   
   

(   )  ( )         

Here f(z) =   
 

  (   
   

 
  )

  and α,β are the factors of  z
2
+
   

 
 +1 

⇒ f(z) =  
 

  (   
   

 
  )

  = 
 

  (   )(   )
   

∴ Res [f,α]  =  
   
   

(   )  ( ) =  
   
   

(   ) 
 

  (   )(   )
  = 

   
    

 

  (   )
 = 

 

  (   )
 

        = 
 

  (4
   √     

 
 5 4

   √     

 
 5) 

  =  
 

  

 
.   √        √     / 

  =  
 

  √      
  = 

 

 √      
   

Hence ∑ Res[f,zk] = Res[f,α]=  
 

 √      
   

∴∫  ( )   
 

 
 = 2πi∑ Res[f,zk] = 

   

 √      
 =  

  

√      
 

∴ ∫
  

       

  

 
  =  

  

√     
    

Example I.3. 

Prove that ∫
  

           

  

 
 

  

    
, 0 ≤ a < 1. 

Solution 

Let I =  ∫
  

           

  

 
  

Let z = e
iθ
 ⇒ dθ =  

  

  
  and let C denotes the unit circle |z| = 1 

Since z = e
iθ
  = cosθ + isinθ and 

 

 
  = cosθ – isinθ, we have cosθ = 

 

 
  (z + 

 

 
)   

∴ I =  ∫
  

           

  

 
 =  ∫

  

  

       .
 

 
/.   

 

 
/ 

 

 
  =  

 

 
∫

  

 

(    ) 
 (    )

 

 

 
 =   

 

 
∫

  

 
(    )   (    )

 

 

 
 

   = 
 

 
∫

  

(    )   (    )

 

 
   =  

 

 
∫

  

           

 

 
   = 

  

  
∫

  
  

 
         

 

 
  =     

  

  
∫

  

.
  

 
   / (      )

 

 
    

=     
  

  
∫

  

 .
  

 
   /  (   

 

 
)

 

 
   = 

  

  
∫

  

.
  

 
   /(   )

 

 
   = ∫  ( )   

 

 
 

Where f(z) =  
  

  .
  

 
   /(   )

 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

To find the poles of f(z): 

Poles of f(z) = zeros of    ( 
 

 
  )(   ) and  

these zeros are given by    ( 
 

 
  )(   ) = 0 

⇒ ( 
 

 
  ) = 0 or (   ) = 0  

⇒ z = 
 

 
  or z = a which are the simple poles of f(z) 

Since 0≤ a < 1,  
 

 
 > 1 

Hence a<1 is the only pole lie inside the unit circle |z| =1  

There are no poles on the real axis 

To find the residue of f(z): 

 Res[f,a] = 
   
   

(   )  ( ) = 
   
   

(   ) 
  

  .
  

 
   /(   )
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= 
   
    

  

  .
  

 
   /

  =  
  

  .
  

 
   /

  =   
  

 (     
 
)
   =  

 

 (     )
   

Hence ∑ Res[f,zk] = Res[f,a] =     
 

 (     )
   

∴∫  ( )   
 

 
 = 2πi∑ Res[f,zk] =  

   

 (     )
  =  

  

(     )
   

⇒ I =  
  

(     )
   

 ⇒  ∫
  

           

  

 
 =  

  

(     )
   

Example I.4. 

Evaluate ∫
    

          

 

 
 

Solution. 

First we have to change the limits to 0 to 2π from 0 to π for the given integral. 

Let I =  ∫
    

          

 

 
 =  ∫

    

   
       

 

 

 
  =  ∫

     

           

 

 
    

To change the limit , take 2θ = ϕ  ⇒ 2dθ = dϕ  

If θ =0 , then ϕ = 0 

If θ= π, then ϕ = 2π 

Hence I  =  ∫
    

          

  

 
     

Put z = e
iϕ 

 ⇒ dϕ =  
  

  
  and let C denotes the unit circle |z| = 1 

Since z = e
iϕ

  = cosϕ + isinϕ and 
 

 
  = cosϕ – isinϕ, we have cosϕ = 

 

 
  (z + 

 

 
)   

∴ I =  ∫
    

          

  

 
    = ∫  

  
  

  

      
 

 
  (    

 

 
)
 

 

 
 = ∫  

  
  

  
         (      )

  

 
 

 
 

        = 
  

 
∫  

   

            
 

 

 
  =  

   

 
∫  

   

     (     )  
 

 

 
  =  ∫  ( )   

 

 
 

Where f(z) = 
   

 (     (     )  )
  

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

To find the poles of f(z): 

Poles of f (z) = zeros of  i(z
2
-2z(2a

2
+1)+1) , these zeros are given by  i(z

2
-2z(2a

2
+1)+1) = 0 

⇒ z
2
-2z(2a

2
+1)+1 = 0 

⇒ z =  
 (     ) √( (     ))

   
  ( )( )

 ( )
    =  

 (     )  √((     ))
   
  

 
    

=        √(     )       =       √                

=       √         =          √       

∴   z =          √       = α (say) 

Or  z =         √     = β (say) 

Hence the poles of f(z) are α,β which are simple poles. 

Now α,β are the roots of the equation z
2
-2z(2a

2
+1)+1 = 0 

Product of the roots αβ = 1 ⇒ | αβ| = 1⇒|α||β| = 1 

Clearly |α| = |        √       | > 1 ⇒ |β| < 1 

∴ the only pole lie inside the unit circle |z| =1 is β =         √     
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There are no poles on the real axis 

To find the residue of f(z) : 

Res[f,β] = 
   
   

(   )  ( )  = 
   
   

(   ) 
   

 (     (     )  )
    

=  
   
   

(   ) 
   

 (   )(   ) 
  =  

   
   

 

   

 (   ) 
  =  

   

 (   ) 
 =  

   

 (        √      .        √    /) 
 

=  
   

 (        √              √    ) 
 =  

   

 (   √    ) 
  =  

 

  √    ) 
 

Hence ∑ Res[f,zk] = Res[f,β] =      
 

  √    ) 
 

∴∫  ( )   
 

 
 = 2πi∑ Res[f,zk] =  

   

  √    ) 
  =  

 

√    ) 
 

⇒ I =  ∫
    

          

 

 
 = 

 

√    ) 
 

Example I.5. 

Evaluate  ∫
   

(       )   

  

 
  ( a > 0, b > 0 ; a > b) 

Solution 

Let I =  ∫
   

(       )   

  

 
   

Take z = e
iθ
 ⇒ dθ =  

  

  
  and let C denotes the unit circle |z| = 1 

Since z = e
iθ
  = cosθ + isinθ and 

 

 
  = cosθ – isinθ, we have cosθ = 

 

 
  (z + 

 

 
)   

⇒ I  = ∫
 
  

  
  

.  
 

 
(  

 

 
)/
 
  

 

 
   = ∫

 
  

  
  

(
     (    )

  
)
 

  

 

 
    = 

 

 
∫

    

(     (    ))   

 

 
    = 

 

 
∫

    

(         ))   

 

 
    

=  ∫  ( )   
 

 
  where f(z) = 

   

 (         ))   
 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

To find the poles of f(z): 

Poles of f(z) = zeros of  i(2az+bz
2
+b)

2
 , these zeros are given by  i(2az+bz

2
+b)

2
 = 0 

⇒ bz
2
+2az +b = 0 ⇒  z

2
+
   

 
 +1 = 0 

⇒ z = 
 
  

 
 √(

  

 
)   

 
   = 

    √       

  
   = 

   √     

 
   

⇒ z = 
   √     

 
   = β (say) 

Or z = 
   √     

 
   = α (say) 

Hence the poles of f(z) are α,β both order 2 

Since α,β are the roots of the equation bz
2
+2az +b = 0  

Product of the root αβ = b/b = 1 ⇒ | αβ| = 1 ⇒ |α||β| = 1 

Given  a > b ⇒ a
2
 > b

2
 ⇒ a

2
- b

2
>0⇒ √        > 0 ⇒ a + √        > a >b  

⇒ a + √       >b ⇒ 
  √     

 
   > 1 ⇒ |

  √     

 
| > 1 

Hence  z = β =   
   √     

 
  < 1 is the only pole lie inside the circle |z| = 1 

There are no poles on the real axis 
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To fine the residue of f(z): 

Res [f,β] = 
   
    

 

  
(   )  ( )  = 

   
    

 

  
(   ) 

   

   .
   

 
     )/

 
  
 

 

 = 
   
    

 

  
(   ) 

   

   ((   )(   ))    
  =  

   
    

 

  
(   ) 

   

    (   ) (   )   
 

= 
   
   

   
 

  

   

    (   )   
 =  

   
   

   
 

   

 

  

  

 (   )   
 = 

   
    

   
 

   
0
(   )    (   )

 (   )  
1
 
 =   

= 
   
    

   
 

   
 (   ) 0

(   )     

 (   )  
1
 
  =  

   
    

   
 

   
 0
(   )     

 (   )  
1
 
   = 

 

   
 0
(   )     

 (   )  
1  

= 
  

   
 0

    

 (   )  
1 = 

  

   
 0

    

 (   )  
1 = 

  

   
 [

   √     

 
  
   √     

 
   

 4
   √     

 
    

   √     

 
5

 

 

] = 
  

   
 [

   

 
    

 4
   √     

 
   
  √     

 
5

 

 

] 

=
  

   
 [

   

 
    

 4
 √     

 
 5

 

 

]  =  [
    

    .√     /
 ]  = 

 

 .√     /
  

Hence ∑ Res[f,zk] = Res[f,β] =      
 

 .√     /
  

∴∫  ( )   
 

 
 = 2πi∑ Res[f,zk] =  

    

 .√     /
    =  

   

.√     /
   

⇒ I =  ∫
   

(       )   

  

 
   = 

   

.√     /
   

Type II. 

Evaluation of the integral ∫  ( )  
 

  
 where f(x) is a real rational function of the real variable x 

If the rational function f(x) = 
 ( )

 ( )
, then degree of  h(x) exceeds that of  g(x) and g(x) ≠ 0.To find the value of the integral, 

by inventing a closed contour in the complex plane which includes the required integral. For this we have to close the 

contour by a very large semi-circle in the upper half-plane. Suppose we use the symbol “R” for the radius. The entire 

contour integral comprises the integral along the real axis from −R to +R together with the integral along the semi-circular 

arc. In the limit as R→∞the contribution from the straight line part approaches the required integral, while the curved 

section may in some cases vanish in the limit. 

 

The poles z1,z2,….,zk of  
 ( )

 ( )
,   that lie in the upper half-plane 

∫  ( )  
 

  
  = ∫

 ( )

 ( )
  

 

  
 =  2πi∑ Res[f,zk] 

Example II.1 

Using the residue of calculus compute  ∫
  

(    )(    )

 

  
 

Solution 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

 

(    )(    )
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To find the poles of f(z) : 

The poles of f(z)  = zeros of (z
2
+1)(z

2
+4) , these zeros are given by  (z

2
+1)(z

2
+4) = 0 

⇒ z
2
+1 = 0 or  z

2
+4 = 0 

⇒ z
2 
 = -1 = i

2
 ⇒ z = ± i 

Or  z
2 
 = -4 = (2i)

2⇒ z = ± 2i 

Hence the poles of f(z) are ± i, ± 2i (all are simple poles) 

And the poles z = i and z = 2i are the only poles lie inside the upper half of semi-circle. 

There are no poles on the real axis 

 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ------------- (a) ( on the real line –R to R (LR)+  the upper half of the semi 

circle CR) 

To find the residue of f(z): 

Res[f,i]  = 
   
   

(   )  ( ) = 
   
   

(   ) 
 

(    )(    )
 = = 

   
   

(   ) 
 

(    )(    )(    )(    )
 

= 
   
    

 

(    )(    )(    )
 = 

 

(    )(    )(    )
 = 

 

(  )(  )(  )
 = 

 

  
 = -

 

 
 

Res[f,2i]  = 
   
    

(    )  ( ) = 
   
    

(    ) 
 

(    )(    )
 = = 

   
    

(    ) 
 

(    )(    )(    )(    )
 

= 
   
     

 

(   )(    )(    )
 = 

 

(    )(    )(     )
 = 

 

( )(  )(  )
 = 

  

   
 = 

 

  
 

Consider |∫  ( )   
 

  
| = |∫

 

(    )(    )
   

 

  
|≤  ∫   

  

(    )(    )

 

  
  ≤ ∫  

    

 (    )(    ) 

 

  
 

 ≤ ∫  
    

(      )(      )

 

  
   ---------(b) 

Let z = Re
iθ
, dz = iRe

iθ
dθ 

⇒ |dz| = |iRe
iθ
dθ| = R dθ (∵ |i| =1 =|e

iθ
|) 

If z = -R, then Re
iθ
 = -R ⇒ e

iθ
 = -1⇒ θ = π 

If z = R, then Re
iθ
 = R ⇒ e

iθ
 = 1⇒ θ = 0 

Hence (b) ⇒ |∫  ( )   
 

  
|≤    ∫  

 

 

   

(    )(    )
  = 

 

(    )(    )
 ∫    
 

 
  = 

  

(    )(    )
 

As R → ∞, 
  

(    )(    )
 → 0 ⇒ ∫  ( )   

 

  
 → 0 

Now as R→ ∞, (a) ⇒ ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 0 =∫  ( )  

 

  
 

 Where  f(x) = 
 

(    )(    )
 

Hence ∫
 

(    )(    )
  

 

  
  = ∫  ( )  

 

  
 =  ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] 

                                       = 2πi{Res[f,i] + Res[f,2i]} = 2πi{
  

 
 + 

 

  
 }=2πi( 

  

  
) =  
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Example II.2 

Using the residue of calculus compute  ∫
  

(    ) 

 

  
 

Solution 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

 

(    ) 
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z
2
+4)

3
, these zeros are given by (z

2
+4)

3
 = 0 

⇒ z
2 
+4 = 0 ⇒ z

2
 = -4 ⇒ z

2
 = (2i)

2 

⇒ z = ±2i ⇒ z = 2i or z = -2i  

Hence the poles of f(z) are z = 2i , z = -2i , both of order 3 

 

The only pole lie inside the upper half of the semi-circle is z = 2i of order 3 

There are no poles on the real axis 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ( on the real line –R to R (LR)+ the upper half of the semi circle CR) 

To find the residue of f(z): 

Res[f,2i] = 
 

( ) 

   
     

  

   
(     )

  ( )  =  
 

 

   
     

  

   
(     )

  

(    )  
 

= 
 

 

   
     

  

   
(     )

  

((    )(    ) )  
  = 

 

 

   
     

  

   
(     )

  

(     )
 (     )

 
 
   

= 
 

 

   
     

  

   

 

(     )
 
 
 = 

 

 

   
     

  

   

  

   
.

 

(     )
 /
 
 = 

 

 

   
     

  

   
.
  (    ) 

(     )
 /

 
 

= 
 

 

   
     

  

   
.

   

(     )
 /
 
  = 

 

 

   
     

.
 ( )(    )  

(     )
 /

 
 = 

  

 

   
     

.
  

(     )
 /
 
 

= 6.
  

(      )
 /
 
 = 

  

(   )
   = 

  

      
  = 

  

     
   

Consider |∫  ( )   
 

  
| = |∫

 

 (    ) 
   

 

  
|≤  ∫   

  

(    ) 

 

  
  ≤ ∫  

    

 (    )  

 

  
 

 ≤ ∫  
    

(      ) 

 

  
   ---------(b) 

Let z = Re
iθ
, dz = iRe

iθ
dθ 

⇒ |dz| = |iRe
iθ
dθ| = R dθ (∵ |i| =1 =|e

iθ
|) 

If z = -R, then Re
iθ
 = -R ⇒ e

iθ
 = -1⇒ θ = π 

If z = R, then Re
iθ
 = R ⇒ e

iθ
 = 1⇒ θ = 0 

Hence (b) ⇒ |∫  ( )   
 

  
|≤    ∫  

 

 

   

(    ) 
  = 

 

(    ) 
 ∫    
 

 
  = 

  

(    ) 
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As R → ∞, 
  

(    ) 
 → 0 ⇒ ∫  ( )   

 

  
 → 0 

Now as R→ ∞, (a) ⇒ ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 0 =∫  ( )  

 

  
 

 Where  f(x) = 
 

(    ) 
 

Hence ∫
 

(    ) 
  

 

  
  = ∫  ( )  

 

  
 =  ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] 

                                       = 2πi{Res[f,2i]} = 2πi{ 
 

    
 }=  

  

   
 

Example II.3 

Prove that  ∫
(      )   

(         )

 

  
  = 

  

  
 

Solution 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

(      ) 

(         )
 

To find the poles of f(z): 

Poles of f(z) = zeros of z
4
+10z

2
+9 , these zeros are given by  z

4
+10z

2
+9 =0 

⇒ z
4
+z

2
+9z

2
+9=0 ⇒ (z

2
+1)(z

2
+9) = 0 

⇒ z
2
 = -1 = i

2
  or z

2
 = -9 = (3i)

2
   

⇒ z = ±i or z = ±3i 

Hence the poles of f(z) are i,-i,3i,-3i (all are simple poles) 

 

The poles that are lying the upper half of the semi-circle are i,3i 

There are no poles on the real axis 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ( on the real line –R to R (LR)+ the upper half of the semi-circle CR) 

To find the residue of f(z): 

Res[f,i] = 
   
   

(   )  ( ) = 
   
   

(   ) 
(      ) 

(         )
  = 

   
   

(   ) 
(      ) 

(   )(   )(    )(    )
 

  =   
   
    

(      ) 

(   )(    )(    )
  = 

(      ) 

(   )(    )(    )
 = 

    

(  )(  )(   )
 = 

    

   
 

Res[f,3i] = 
   
    

(    )  ( ) = 
   
    

(    ) 
(      ) 

(         )
   

= 
   
    

(    ) 
(      ) 

(   )(   )(    )(    )
  = 

   
     

(      ) 

(   )(   )(    )
   = 

((  )  (  )  ) 

(    )(    )(     )
 

= 
      

(  )(  )(  )
 = 

 (    ) 

    
 = 

     

   
 

Consider |∫  ( )   
 

  
| = |∫

(      ) 

(         )
   

 

  
|≤  ∫   

(      )   

(         )

 

  
  ≤ ∫  

 (      )      

 (         ) 

 

  
 

 ≤ ∫  
 (      )      

 (    )  (    ) 

 

  
    ≤ ∫  

(          )    

(      )(      )

 

  
    ---------(b) 
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Let z = Re
iθ
, dz = iRe

iθ
dθ 

⇒ |dz| = |iRe
iθ
dθ| = R dθ (∵ |i| =1 =|e

iθ
|) 

If z = -R, then Re
iθ
 = -R ⇒ e

iθ
 = -1⇒ θ = π 

If z = R, then Re
iθ
 = R ⇒ e

iθ
 = 1⇒ θ = 0 

Hence (b) ⇒ |∫  ( )   
 

  
|≤    ∫  

 

 

    

(    )(    )
 -  ∫  

 

 

   

(    )(    )
 + ∫  

 

 

   

(    )(    )
 = 

  

(    )(    )
 ∫    
 

 
  - 

 

(    )(    )
 ∫    
 

 
  + 

 

(    )(    )
 ∫    
 

 
  

= 
   

(    )(    )
 - 

  

(    )(    )
 +

  

(    )(    )
 

As R → ∞, 
   

(    )(    )
 → 0  , 

  

(    )(    )
 → 0  and  

  

(    )(    )
 → 0    ⇒ ∫  ( )   

 

  
 → 0 

Now as R→ ∞, (a) ⇒ ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 0 =∫  ( )  

 

  
 

 Where  f(x) = 
(      ) 

(         )
 

Hence ∫
(      ) 

(         )
  

 

  
  = ∫  ( )  

 

  
 =  ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] 

 = 2πi  2
    

   
 
     

   
3  =     2

          

   
3  =

    

  
   = 

   

  
    

Example II.4 

Evaluate  ∫
   

     

 

 
   

Solution 

Let us take ∫
   

     

 

  
 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

  

     
 

To find the poles of f(z): 

Poles of f(z) = zeros of z
4
+a

4
 , these zeros are given by z

4
+a

4
 =0 

⇒ z
4 
= - a

4
  ⇒ z

4
 = a

4
e

iπ
    (∵  e

iπ
  = -1) 

⇒ z
4
 = a

4
e

iπ
 e

i2nπ 
   (∵ e

i2nπ
  = 1) 

⇒ z
4
 = a

4
e

iπ+2nπi
  = 

 
  a

4
e

i(2n+1)π 

⇒ z = a e
i(2n+1)π/4 

, n = 0,1,2,3 

If n=0, z = a e
iπ/4 

 = a(    
 

 
     

 

 
)  = a( 

 

√ 
 

 

√ 
)   = α (say)

 

If n = 1, z = a e
i3π/4 

 = a(    
  

 
     

  

 
)  = a( 

  

√ 
 

 

√ 
)  = β (say) 

If n = 2, z = a e
i5π/4 

 = a(    
  

 
     

  

 
)  = -a( 

 

√ 
 

 

√ 
)  = γ(say) 

If n=3, z = a e
i7π/4 

 = a(    
  

 
     

  

 
)  = a( 

 

√ 
 

 

√ 
)  = δ(say) 

 

The poles lying inside the upper hemi circle are ae
iπ/4 

 =α  , ae
i3π/4 

 = β (both are simple poles) 
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There are no poles on the real axis 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ( on the real line –R to R (LR)+ the upper half of the semi-circle CR) 

To find the residue of f(z): 

Res[f,α] =
   
   

(   )  ( ) = 
   
   

(   ) 
  

     
    

It is difficult to solve while factoring  
  

     
 and taking limit, so we will use L‟Hospital rule (that is differentiating Nr and 

Dr separately w.r.to z) 

=   
   
    

  

   
   =  

  

   
 = 

  

   
   

Now α = a e
iπ/4 

 ⇒ α
4
 = a

4
e

iπ    
 ⇒ α

4
 =- a

4  
 (∵e

iπ
 = -1) 

∴ Res [f,α] =   
  

   
 = - 

  
  
  

   
  =  - 

 
  
  

   
 

Now β = a e
i3π/4 

 ⇒ β
4
 = a

4
e

i3π    
 ⇒ β

4
 =- a

4  
 (∵e

i3π
 = -1) 

Similarly , Res [f,β] =   
  

   
    =     

  

   
    = - 

  
   
  

   
     = - 

 
   
  

   
      

Consider |∫  ( )   
 

  
| = |∫

  

     
   

 

  
|≤  ∫   

   

     

 

  
  ≤ ∫  

     

       

 

  
 

     ≤ ∫  
    

       

 

  
    ---------(b) 

Let z = Re
iθ
, dz = iRe

iθ
dθ 

⇒ |dz| = |iRe
iθ
dθ| = R dθ (∵ |i| =1 =|e

iθ
|) 

If z = -R, then Re
iθ
 = -R ⇒ e

iθ
 = -1⇒ θ = π 

If z = R, then Re
iθ
 = R ⇒ e

iθ
 = 1⇒ θ = 0 

Hence (b) ⇒ |∫  ( )   
 

  
|≤    ∫  

 

 

   

(     )
   ≤ 

 

(     )
∫  
 

 
   ≤ 

  

(     )
 

As R → ∞,  
  

(     )
 → 0  ⇒ ∫  ( )   

 

  
 → 0 

Now as R→ ∞, (a) ⇒ ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 0 =∫  ( )  

 

  
 

 Where  f(x) = 
  

(     )
 

Hence ∫
  

(     )
  

 

  
  = ∫  ( )  

 

  
 =  ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] 

= 2πi { - 
 
  
  

   
 - 
 
   
  

   
 }  = - 

    

   
 {  

  

    
   

  } =  - 
    

   
 {( 

 

√ 
 

 

√ 
)   +( 

  

√ 
 

 

√ 
)  } 

 =  
    

 √   
 =  

   

√   
 

We know that ∫
  

(     )
  

 

  
   =  2∫

  

(     )
  

 

 
     

⇒ ∫
  

(     )
  

 

 
  =  

 

 
∫

  

(     )
  

 

  
 =  

   

 √   
  

Type III. 

Evaluation of the integral ∫  ( )         
 

  
  , ∫  ( )         

 

  
   where m > 0 and f(x) is a real rational 

function of the real variable x 

If the rational function f(x) = 
 ( )

 ( )
, then degree of  h(x) exceeds that of  g(x) and g(x) ≠ 0. 
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     Let g(x) and h(x) be polynomials with real coefficients, of degree p and q, respectively, where q ≥ p+1.  

 

If  h(x) ≠0  for all real x, and m  is a real number satisfying  m > 0,  then 

∫
 ( )

 ( )

 

  
                 ∫

 ( )

 ( )

 

  
            and  ∫

 ( )

 ( )

 

  
                ∫

 ( )

 ( )

 

  
          

We know that Euler‟s formula       = cos mx  + i sin mx , where  cos mx   = Re[    ]  

and sin mx = Im[    ] , m is a positive real.  

We have ∫
 ( )

 ( )

 

  
       =  ∫

 ( )

 ( )

 

  
          + i ∫

 ( )

 ( )

 

  
         

Here we are going to use the complex function f(z) = 
 ( )

 ( )
     to evaluate the given integral. 

∫
 ( )

 ( )

 

  
          =  Re {2πi ∑ Res[f,zk]} and  

∫
 ( )

 ( )

 

  
          = Im  {2πi ∑ Res[f,zk]}, where z1,z2,…..zk are the poles lies on the upper half of the semi-circle. 

 

Lemma III.1.(Jordan’s Lemma) 

If f (z) → 0 uniformly as z →∞, then         ∫     
  

 ( )   = 0, (m > 0) where C1 denotes the semi-circle |z| = R, I(z) 

> 0.  

Proof. 

Given  f (z) → 0 uniformly as z →∞ 

⇒ given 𝜀 > 0 , ∃ a R0 > 0 such that | f(z) – 0| < 𝜀 , ∀ R ≥  R0   

That is | f(z)| < 𝜀 , ∀ R ≥  R0  --------(a) 

Let |z| = R which is the semi-circle  

Put z = Re
iθ
 ⇒ dz = R e

iθ
 i dθ ⇒ dz = izdθ,     0≤ θ  ≤ π 

Now              =      
  

    =       (          )  =                    =                        

⇒      (          ) | =                          =                ( ∵           = 1) ----- (b) 

We know that 
    

 
  is monotonically decreases as θ increases from 0 to 

 

 
. 

If 0 ≤ θ ≤ 
 

 
 , then  

    (
 

 
) 

 

 

 ≤  
    

 
   

⇒  
  
 

 

  ≤  
    

 
 ⇒  

 

 
  ≤  

    

 
 ⇒ sinθ ≥  

  

 
 

⇒ -  
  

 
 ≥ - sinθ 

⇒  -  
    

 
 ≥ - mRsinθ 

⇒     
    

     ≥             ------ ( c) 

From (a), (b) and (c), 
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|∫     
  

 ( )  |  ≤    ∫      
  

 ( )    

                              ≤∫      
  

   ( )      

                                 ≤  𝜀 ∫          
 

  
                 (  ∵ |dz| = |izdθ| = |z|dθ = Rdθ) 

                                  ≤ 2𝜀R  ∫  
 

 
 
           

                                   ≤ 2𝜀R ∫  
 

 
 
  

    

    

                                    ≤ 2𝜀R [
 
 
    
 

 
   

 

]
 

 

 
      

                                 ≤ 2𝜀R{(    )
 

    
  - (e

0
) 

 

    
  } 

                                     ≤ 
    

   
{(       + 

                                     ≤  
  

 
{       + ≤ 

  

 
     (∵{       +   ) 

|∫     
  

 ( )  |   ≤ 
  

 
 = 𝜀‟

 (say) 

As lim R → ∞ ,  |∫     
  

 ( )    |   ≤ 𝜀‟ 
 

⇒  ∫     
  

 ( )   → 0 as R → ∞ 

Example III.1. 

Use the method of contour integration to prove that  ∫
      

(     )
  

 

 
   =  

     

  
  and  

∫
      

(     )
  

 

 
    = 0 

Solution. 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

     

(     )
 

To find the poles of f(z): 

Poles of f(z) = zeros of z
2
+a

2
 , these zeros are given by z

2
+a

2
 =0 

⇒  z
2 

 = - a
2 
 ⇒ z = (ai)

2
 ⇒ z = ± ai ⇒ z = ai or z = -ai 

Poles of f (z) are ai, -ai (both are simple poles) 

There are no poles on the real axis 

 

The only pole lie inside the upper half of semi-circle is z  = ai 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ( on the real line –R to R (LR)+ the upper half of the semi-circle CR). 

To find the residue of f(z): 

Res[f,ai] = 
   
    

(    )  ( ) = 
   
    

(    )  
     

(     )
  = 

   
    

(    )  
     

(     )(    )
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= 
   
     

 
     

(    )
   =  

      

(     )
    =

     

   
     

Now  
   
   

  

(     )
  = 0  

∴ by Jordan‟s lemma ,    
   

   
∫

      

(     )
    

 

  
 = 0  

As R → ∞ ,  

 ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 

   
   

∫
      

(     )
    

 

  
 = ∫

      

(     )
  

 

  
 +0 

=  ∫
      

(     )
  

 

  
 

Hence  ∫
      

(     )
  

 

  
 = ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] = 2πi 

     

   
    = 

      

 
     

⇒ ∫
             

(     )
  

 

  
  = 

      

 
 

⇒ ∫
      

(     )
  

 

  
 +   ∫

      

(     )
  

 

  
   = 

      

 
 

Equating real and imaginary parts, 

∫
      

(     )
  

 

  
 = 

      

 
 and  ∫

      

(     )
  

 

  
 = 0 

⇒ ∫
      

(     )
  

 

 
 = 

 

 
∫

      

(     )
  

 

  
 =  

      

  
 

Example III.2. 

Apply the calculus of residue to evaluate  ∫
     

(     )(     )
  

 

  
 , (a > b > 0) 

Solution. 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

    

(     )(     )
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z
2
+a

2
) (z

2
+b

2
), these zeros are given by (z

2
+a

2
) (z

2
+b

2
) =0 

⇒  z
2 

 = - a
2 
 or z

2 
 = - b

2 
 ⇒ z = (ai)

2
 or z = (bi)

2
 ⇒ z = ± ai or z = ± bi  

⇒ z = ai or z = -ai or z =bi or z = -bi 

Poles of f (z) are ai,-ai, bi,-bi (all are simple poles) 

There are no poles on the real axis. 

 

The poles lie inside the upper half of semi-circle are z  = ai , z = bi 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ( on the real line –R to R (LR)+ the upper half of the semi-circle CR). 

To find the residue of f(z): 

Res[f,ai] = 
   
    

(    )  ( ) = 
   
    

(    ) 
    

(     )(     )
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=
   
    

(    ) 
    

(    )(    )(    )(    )
  = 

   
     

    

(    )(    )(    )
   

= 
     

(     )(     )(     )
 =  

    

   (     )
  = 

    

   (     )
   

Similarly, 

Res[f,bi] = 
   
    

(    )  ( ) =  
    

   (     )
   

Now   
   
   

      
  

(     )(     )
  = 0  

By Jordan‟s Lemma, 

   
   

∫
     

(     )(     )
    

 

  
 = 0 

As R → ∞ ,  

 ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 

   
   

∫
     

(     )(     )
    

 

  
 = ∫

     

(     )(     )
  

 

  
 +0 

=  ∫
     

(     )(     )
  

 

  
 

Hence  ∫
     

(     )(     )
  

 

  
 = ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] = 2πi , 

    

   (     )
 +

    

   (     )
-      

 = 
   (         ) 

    (     )
 =  

 (         ) 

  (     )
 

  ⇒ ∫
           

(     )(     )
  

 

  
  = 

 (         ) 

  (     )
 

Equating real and imaginary parts, 

∫
     

(     )(     )
  

 

  
  = 

 (         ) 

  (     )
   and ∫

     

(     )(     )
  

 

  
  =  0 

Example III.3 

Evaluate ∫
      

    
  

 

  
  and ∫

      

    
  

 

  
   

Solution 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

     

    
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z
2
+4), these zeros are given by (z

2
+ 4) =0 

⇒ z
2 

 = - 2
2 
 ⇒ z = (2i)

2
  ⇒ z = ± 2i   

⇒ z = 2i or z = -2i  

Poles of f (z) are 2i,-2i (both are simple poles) 

There are no poles on the real axis. 

 

The only pole lie inside the upper half of semi-circle is z  = 2i  

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 
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Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ( on the real line –R to R (LR)+ the upper half of the semi-circle CR). 

To find the residue of f(z): 

Res[f,2i] = 
   
    

(    )  ( ) = 
   
    

(    ) 
     

    
  = 

   
    

(    ) 
     

(    )(    )
   

=
   
     

     

(    )
   = 

       

(     )
 =  

    

 
 

Now   
   
   

      
  

(    )
  = 0  

By Jordan‟s Lemma, 

   
   

∫
      

(    )
    

 

  
 = 0 

As R → ∞ ,  

 ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 

   
   

∫
      

(    )
    

 

  
 = ∫

      

(    )
  

 

  
 +0 

Hence  ∫
      

(    )
  

 

  
 = ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] = 2πi , 

    

 
 -   =   e

-2
πi 

  ⇒ ∫
             

(    )
  

 

  
  = e

-2
πi 

Equating real and imaginary parts, 

∫
      

(    )
  

 

  
  =  0  and ∫

     

(    )
  

 

  
  =  e

-2
π 

Example III.4 

Evaluate ∫
      

       
  

 

 
  (m > 0) 

Solution 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

     

       
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z
4
+z

2
+1), these zeros are given by z

4
+z

2
+1=0 

z
4
+- z

2   
+ z

2
+ z

2 
+1=0 ⇒z

2 
(z

2 
+1) + z

2 
+1 = z

2
 

⇒ (z
2 
+1)

2
 - z

2
 = 0 ⇒ (z

2 
+1-z)( z

2 
+1+z) = 0 

⇒ z
2 
+1-z = 0 or z

2 
+1+z = 0 

⇒ z =  
  √  

 
 ,or z = 

  √  

 
, or z = 

   √  

 
 ,or z = 

   √  

 
 

Poles of f (z) are
  √  

 
 , 
  √  

 
, 
   √  

 
 , 
   √  

 
 (all are simple poles) 

There are no poles on the real axis. 

 

The poles lie inside the upper half of semi-circle is z = 
  √  

 
  = α (say) and z =  

   √  

 
 = β(say) 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 
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Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 (on the real line –R to R (LR) + the upper half of the semi-circle CR). 

To find the residue of f(z): 

Res[f,α] = 
   
   

(   )  ( ) = 
   
   

(   ) 
     

(   )(   )(   )(   )
  = 

   
    

     

(   )(   )(   )
 

= 
     

(   )(   )(   )
 = 

     

(   )(  )(   )
 = 

     

(   )(  )(   )
 = 

 
  (  √  )

  

,
  √  

 
 
   √  

 
-(
 (  √  )

 
,
(  √  )

 
 
(   √  )

 
-
 

=
 
  (  √  )

  

(
 (  √  )

 
)(
 √  

 
)
 = 

 
  (  √  )

  

(√    )
 = 

 
  
   

 √  
  

(√    )
   

Similary, 

Res[f,β] = 
 
  (   √  )

  

,
(   √  )

 
 
  √  

 
-(
 (   √  )

 
),
(  √  )

 
 
(   √  )

 
-
 = 

 
  (   √  )

  

(  ). (   √  )/

 
( √  )

  

 
  (   √  )

  

(  )(
 (   √  )

 
)(
 √  

 
)
 = 

 
  (   √  )

  

(√    )
    = 

 
  
  
   

 √  
  

(√    )
 

Now 
   
   

      
  

(       )
  = 0  

By Jordan‟s Lemma, 

   
   

∫
      

(       )
    

 

  
 = 0 

As R → ∞ ,  

 ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 

   
   

∫
      

(       )
    

 

  
 = ∫

      

(       )
  

 

  
 +0 

Hence  ∫
      

(       )
  

 

  
 = ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] = 2πi  [ 

 
  
   

 √  
  

(√    )
    

 
  
  
   

 √  
  

(√    )
]             

= 2πi  [ 
 
 √  
 {(  √  ) 

  
  (√    ) 

  
  
 }

(√    )(√    )
 ]     

=    [ 
 
 √  
 

 

2(  √  )(   .
 

 
/     .

 

 
/) (√    )(   .

 

 
/     .

 

 
/)3

(    )
 ]     

=    [
 
 √  
 

   

2(  √  )(   .
 

 
/     .

 

 
/) (√    )(   .

 

 
/     .

 

 
/)3

 
 ]   

=      [
 
 √  
 

   

2 √     .
 

 
/       .

 

 
/3

 
 ]    

= 
    

 √  
 (√    .

 

 
/      .

 

 
/

   
  = 

  
 √  
 (√    .

 

 
/      .

 

 
/

 
   

  ⇒ ∫
             

(       )
  

 

  
  = 

  
 √  
 (√    .

 

 
/      .

 

 
/

 
   

Equating real and imaginary parts, 

∫
      

(       )
  

 

  
  =  

  
 √  
 (√    .

 

 
/      .

 

 
/
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  and ∫
      

(       )
  

 

  
  =  0 

Hence ∫
      

(       )
  

 

 
  =    

 

 
∫

      

(       )
  

 

  
        =  

  
 √  
 (√    .

 

 
/      .

 

 
/

 
   

Example III.5 

Prove that ∫
      

(     ) 
  

 

 
    

 

   
(    )      (m > 0, a > 0) 

Solution 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

     

(     )    
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z
2
+a

2
 )

2
, these zeros are given by (z

2
+a

2
 )

2
=0 

⇒  z
2 

 = - a
2 
 ⇒ z = (ai)

2
 ⇒ z = ± ai ⇒ z = ai (twice)or z = -ai(twice) 

Poles of f (z) are ai, -ai (both are order 2) 

There are no poles on the real axis 

 

The only pole lie inside the upper half of semi-circle is z  = ai (order 2) 

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ( on the real line –R to R (LR)+ the upper half of the semi-circle CR). 

To find the residue of f(z): 

Res[f,ai] = 
   
     

 

  
(    )  ( )  =    

   
     

 

  
(    ) 

    

(     ) 
      

= 
   
     

 

  
(    ) 

    

(    ) (    ) 
    = 

   
     

 

  

    

(    ) 
     = 

   
     

[(    )             (    )]

(    ) 
 

= 
   
     

[(    )            ]

(    ) 
 = 

[(     )              ]

(     ) 
 = 

,              -

(   ) 
 =  

     (    )

     
  

= 
    (    )

    
  

Now  
   
   

  

(     ) 
  = 0  

∴ by Jordan‟s lemma ,    
   

   
∫

      

(     ) 
    

 

  
 = 0  

As R → ∞ ,  

 ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 

   
   

∫
      

(     ) 
    

 

  
 = ∫

      

(     ) 
  

 

  
 +0 

=  ∫
      

(     ) 
  

 

  
 

Hence  ∫
      

(     ) 
  

 

  
 = ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] = 2πi 

    (    )

    
 = 
     (    ) 
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⇒ ∫
             

(     ) 
  

 

  
  = 

     (    ) 

   
 

⇒ ∫
      

(     ) 
  

 

  
 +   ∫

      

(     ) 
  

 

  
   = 

     (    ) 

   
 

Equating real and imaginary parts, 

∫
      

(     ) 
  

 

  
 = 

     (    ) 

   
 and  ∫

      

(     ) 
  

 

  
 = 0 

⇒ ∫
      

(     ) 
  

 

 
 = 

 

 
∫

      

(     ) 
  

 

  
 =  

     (    ) 

   
 

Note:III.1 

z = re
iθ
 ⇒  r = |z| and θ= arg (z)  

logz = Log r+i arg(z) 

If z = x+iy , r = (x
2
+y

2
)

1/2 
, θ= arg (z) = arg (x+iy) = tan

-1
(y/x) 

log(x+i) = log (x
2
+1)

1/2
 + iarg(x) = log (x

2
+1)

1/2
 +0 = log (x

2
+1)

1/2
 

Example III.6 

Prove that ∫
    (    ) 

    
  

 

 
          

Solution 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

    (   )

    
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z
2
+1 ), these zeros are given by (z

2
+1 )=0 

⇒  z
2 

 = - 1
 
 ⇒ z = (i)

2
 ⇒ z = ± i ⇒ z = i or z = -i 

Poles of f (z) are i, -i (both are simple poles) 

There are no poles on the real axis. 

 

The only pole lie inside the upper half of semi-circle is z  = i  

By Cauchy‟s residue theorem, ∫  ( )   
 

 
 = 2πi∑ Res[f,zk] where zk are the singularities(poles) of f(z). 

Now ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + ∫  ( )   

 

  
 ( on the real line –R to R (LR)+ the upper half of the semi-circle CR). 

To find the residue of f(z): 

Res[f,i] = 
   
   

(   )  ( ) =
   
   

(   ) 
    (   )

    
 = 
   
   

(   ) 
    (   )

(   )(   )
 

              = 
   
    

    (   )

(   )
 = 

    (   )

(   )
 = 

      

  
 = 

   (  )
 
        (

 

 
)

  
  = 

           ( )

  
  (using Note III.1) 

                = 
     

  

 

  
 

Now  
   
   

   (   ) 

    
  =  

   
   

   (   ) 

(   )(   )
   = 

   
   

  

(   )
   
   
   

   (   ) 

(   )
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Consider  
   
   

  

(   )
   = 0 

Consider  
   
   

    (   ) 

(   )
   it is undetermined, so we have to use L‟Hospital‟s rule 

   
   

 

   
 

 
   = 

   
   

  

   
   = 0 

Hence 
   
   

   (   ) 

    
  = 0 

⇒ 
   
   

∫  
 

  

   (   ) 

    
  = 0 ⇒ 

   
   

∫  
 

  

   (   ) 

    
  = 0    (∵ |z| = R) 

As R → ∞ ,  

 ∫  ( )   
 

 
  = ∫  ( )  

 

  
 + 

   
   

∫
    (   )  

    
    

 

  
 = ∫

    (   ) 

    
  

 

  
 +0 

=  ∫
   (    )

 
  

    
  

 

  
 =  ∫

 

 
    (    ) 

    
  

 

  
            (By using the Note III.1) 

= 
 

 
∫

    (    ) 

    
  

 

  
  =  ∫

    (    ) 

    
  

 

 
 

Hence  ∫
    (    ) 

    
  

 

 
 = ∫  ( )   

 

 
 = 2πi∑ Res[f,zk] = 2πi 

     
  

 

  
 

=πlog2 +i
  

 
 

 Equating real part  ∫
    (    ) 

    
  

 

 
 = πlog2 

Case of poles are on the real axis. 

Type IV 

If the rational function f(z) = 
 ( )

 ( )
, then degree of  h(z) exceeds that of  g(z) and g(z) ≠ 0. 

Suppose h(z) has simple zeros on the real axis ( that is simple poles of f(z) on the real axis) , let it be a1,a2,…ak 

and h(z) has zeros inside the upper half of semi-circle ( that is poles of f(z) inside the upper half of semi-circle), let it be 

b1,b2,…bs, 

then ∫  ( )  
 

  
 =  πi∑ Res[f,ak] + 2πi∑ Res[f,bs] , where k = 1,2,….k and s = 1,2,…s 

  

Where  C1,C2,….Ck are the semi circles  and b1,b2,…bs  are lie upper half of these semi circles. 

Example IV.1. 

Evaluate ∫
  

    
  

 

  
    

Solution. 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

 

    
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z
3
- 8 ), these zeros are given by (z

3
- 8)=0 

⇒ z
3 

 =  8
 
 ⇒ z

3
 = (2)

3
 ⇒ z = 2  
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Since z-2 is a factor of z
3
- 8 ,  z

3
- 8 = (z-2)(z

2
+2z+4) = 0 

⇒ z
2
+2z+4 = 0 ⇒ z = 

   √    

 
 =  

   √    

 
 = 

     √  

 
 = -1±i√3 

Poles of f (z) are 2 , -1+i√3  and -1-i√3   (all are simple poles) 

Pole lie on the real axis z =2 

Pole lie inside the upper half of semi-circle z = -1+i√3   

 

To find the residue of f(z): 

Res[f,2] = 
   
   

(   )  ( ) = 
   
   

(   ) 
 

    
 = 

   
   

(   ) 
 

(   )(     √ )(     √ )
 

= 
   
    

 

(     √ )(     √ )
 =   

 

(     √ )(     √ )
 =  

 

(   √ )(   √ )
 

=
 

(   )
 = 

 

 
 

Res[f, -1+i√3] = 
   

      √  
(  (    √ ))  ( )         

= 
   

      √  
(     √ ) 

 

    
 = 

   

      √  
(     √ ) 

 

(   )(     √ )(     √ )
 

=
   

      √   

 

(   )(     √ )
 =  

    √ 

(    √   )(    √     √ )
  =  

    √ 

(    √ )(  √ )
  =

    √ 

(   √   )
 

=
    √ 

  ( √   )
 = 

(    √ )(   √ )

  ( √   )(   √ )
 = 

 (    √ )(    √ )

  (   )
  =  

(      √ )

  
 =
(     √ )

  
 = 

  (   √ )

  
 = 

 (   √ )

  
 

We know that ∫  ( )  
 

  
 =  πi∑ Res[f,ak] + 2πi∑ Res[f,bs] where ak „s are the poles lie on real axis and bs „s are the poles 

lie inside the upper half of semi-circle. 

∫
 

    
  

 

  
 =  πi∑ Res[f,ak] + 2πi∑ Res[f,bs] =  πi(

 

 
) + 2πi(

 (   √ )

  
) 

= 
  

 
 - 
  

 
 -
  √  

 
  = 

√  

 
 

Type V 

If the rational function f(z) = 
 ( )

 ( )
, then degree of  h(z) exceeds that of  g(z) and g(z) ≠ 0. 

Suppose h(z) has simple zeros on the real axis ( that is simple poles of f(z) on the real axis) , let it be a1,a2,…ak 

and h(z) has zeros inside the upper half of semi-circle ( that is poles of f(z) inside the upper half of semi-circle), let it be 

b1,b2,…bs, 

Let m be a positive real number and if f(z) = 
     ( )

 ( )
 , then  

∫      
 ( )

 ( )
  

 

  
     = Re  ∫        ( )  

 

  
  

=    [   ∑   
      ,    -] +   0  ∑   

      ,    -1 

And  

∫      
 ( )

 ( )
  

 

  
   = Img  ∫        ( )  
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 =     [   ∑   
      ,    -] +     0  ∑   

      ,    -1 

 Where b1,b2,…bs, are the poles of  f(z) that lie in the upper half   of the semi-circles 

C1,C2,….Ck . 

Example V.1. 

Prove that ∫
     

(   )(    )
  

 

  
  

 

  
( 

 

  
      )   and 

∫
     

(   )(    )
  

 

  
  

 

 
( 

 

  
     )    

Solution. 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

   

(   )(    )
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z-1)(z
2
+4), these zeros are given by (z-1)(z

2
+4) =0 

⇒ z-1 = 0 or z
2
+4 =0 ⇒ z = 1 or z

2 
 = -4 = (2i)

2 

⇒ z = 1 or z = 2i or z = -2i 

Poles of f(z) are z = 1 , z = 2i , z = -2i  (all are simple poles) 

The only pole lie on the real axis is z = 1 

The only pole lie inside the semi-circle is z = 2i 

 

To find the residue of f(z): 

Res[f,1] = 
   
   

(   )  ( ) =  
   
   

(   ) 
   

(   )(    )
 = 

   
    

   

(    )
 

= 
  

(   )
 = 

  

 
 

Res[f,2i] = 
   
    

(    )  ( ) =  
   
    

(    ) 
   

(   )(    )(    )
  

= 
   
     

   

(   )(    )
 =  

    

(    )(     )
 = 

   

(    )(  )
 

We know that  

∫      
 ( )

 ( )
  

 

  
     = 

   ∫        ( )  
 

  
 =    [   ∑   

      ,    -] +   0  ∑   
      ,    -1 

And  ∫      
 ( )

 ( )
  

 

  
 = 

    ∫        ( )  
 

  
 =     [   ∑   

      ,    -] +     0  ∑   
      ,    -1 

Where ak‟s are the poles lie on the real axis and bs‟s are the poles lie inside the upper half of the semi-circle. 

     ∫
     

(   )(    )
  

 

  
 = Re ∫       ( )  

 

  
 = Re ∫      

   

(   )(    )
  

 

  
  =   [       ,    -] +   [      ,   -] 
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 =   0    
   

(    )(  )
1 +   0   

  

 
1 

=   0  
   

(    )( )
1 +   0   (

          

 
)1 

=   0  
   (    )

 (    )(    )
1 +   0 

            

 
1 =   0  

   (    )

 (    )
1 -  

     

 
  =   0  

   (    )

   
1 -  

     

 
   

= 0 
    

   
1 -  

     

 
   =   

 

  
,          - 

 ∫
     

(   )(    )
  

 

  
 = Img ∫       ( )  

 

  
 =  Img ∫      

   

(   )(    )
  

 

  
   

=     [   ∑   
      ,    -] +     0  ∑   

      ,    -1 

 = Img0  
   (    )

 (    )(    )
1 +     0 

            

 
1 

=     0  
   (    )

   
1 + 

     

 
  =    

    

   
  + 

     

 
   =   

   

  
  + 

     

 
 = 

 

 
,         - 

Example V.2. 

Prove that ∫
      

 
  

 

 
  

 

 
    

Solution. 

Consider the integral ∫  ( )   
 

 
 where f(z) = 

    

 
 

To find the poles of f(z): 

Poles of f(z) = zeros of (z), this zero is given by z =0 

The only pole of f(z) is z = 0 simple and lie on real axis 

 

To find the residue of f(z): 

Res[f,0] = 
   
   

(   )  ( ) =  
   
   

  
    

 
 = e

0
 = 1 

We know that  ∫      
 ( )

 ( )
  

 

  
 = 

   ∫        ( )  
 

  
 =    [   ∑   

      ,    -] +   0  ∑   
      ,    -1 

And  ∫      
 ( )

 ( )
  

 

  
 = 

    ∫        ( )  
 

  
 =     [   ∑   

      ,    -] +     0  ∑   
      ,    -1 

Where ak‟s are the poles lie on the real axis and bs‟s are the poles lie inside the upper half of the semi-circle. 

∴ ∫
     

 
  

 

  
  =      ∫        ( )  

 

  
 =      ∫      

    

 
  

 

  
  

=    [   ∑   
      ,    -] +     0  ∑   

      ,    -1 

=    [      ,   -] =    ,   ( )- = π 

Hence ∫
     

 
  

 

 
 = 

 

 
∫

     

 
  

 

  
   = 
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5.      CONCLUSION 

In careful consideration and comparisons of various results in contour integration made an important development in 

finding more concepts in engineering fields and I am still working on this to get more results in these areas. The extension 

of the contour integral method is used for the electrical design of planar structures in digital systems and this method is 

further developed for analysis of multi-media circuits and various engineering files. 
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